1
|
Markey O, Vasilopoulou D, Kliem KE, Fagan CC, Grandison AS, Sutton R, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA. Effect of fat-reformulated dairy food consumption on postprandial flow-mediated dilatation and cardiometabolic risk biomarkers compared with conventional dairy: a randomized controlled trial. Am J Clin Nutr 2022; 115:679-693. [PMID: 35020795 PMCID: PMC8895219 DOI: 10.1093/ajcn/nqab428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longer-term consumption of SFA-reduced, MUFA-enriched dairy products has been reported to improve fasting flow-mediated dilatation (FMD). Yet, their impact on endothelial function in the postprandial state warrants investigation. OBJECTIVES The aim was to compare the impact of a fatty acid (FA) modified with a conventional (control) dairy diet on the postprandial %FMD (primary outcome) and systemic cardiometabolic responses to representative meals, and retrospectively explore whether treatment effects differ by apolipoprotein E (APOE) or endothelial NO synthase (eNOS) Glu298Asp gene polymorphisms. METHODS In a crossover-design randomized controlled study, 52 adults with moderate cardiovascular disease risk consumed dairy products [38% of total energy intake (%TE) from fat: FA-modified (target: 16%TE SFAs; 14%TE MUFAs) or control (19%TE SFAs; 11%TE MUFAs)] for 12 wk, separated by an 8-wk washout. Blood sampling and FMD measurements (0-480 min) were performed pre- and postintervention after sequential mixed meals that were representative of the assigned dairy diets (0 min, ∼50 g fat; 330 min, ∼30 g fat). RESULTS Relative to preintervention (∆), the FA-modified dairy diet and meals (treatment) attenuated the increase in the incremental AUC (iAUC), but not AUC, for the %FMD response observed with the conventional treatment (-135 ± 69% vs. +199 ± 82% × min; P = 0.005). The ∆ iAUC, but not AUC, for the apoB response decreased after the FA-modified treatment yet increased after the conventional treatment (-4 ± 3 vs. +3 ± 3 mg/mL × min; P = 0.004). The ∆ iAUC decreased for plasma total SFAs (P = 0.003) and trans 18:1 (P < 0.0001) and increased for cis-MUFAs (P < 0.0001) following the conventional relative to the FA-modified treatment. No treatment × APOE or eNOS genotype interactions were evident for any outcome. CONCLUSIONS This study provides novel insights into the longer-term effects of FA-modified dairy food consumption on postprandial cardiometabolic responses.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Kirsty E Kliem
- Animal, Dairy, and Food Chain Sciences, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Alistair S Grandison
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Rachel Sutton
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - David J Humphries
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | | |
Collapse
|