1
|
Stein HH. The pig is an excellent model to determine amino acid digestibility of human foods and to generate data needed to meet human amino acid requirements. Front Nutr 2024; 11:1434430. [PMID: 39149546 PMCID: PMC11324576 DOI: 10.3389/fnut.2024.1434430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The protein value of any food item is determined by the quantity and ileal digestibility of indispensable amino acids in that food. To determine the ileal digestibility of amino acids, an animal model needs to be used, and the pig is the preferred model because values for ileal digestibility obtained in pigs are representative of values obtained in humans. In addition, pigs are omnivorous animals like humans, they are meal eaters, they consume most diets that humans consume, they are easy to work with, and they can be used for repeated determinations of digestibility in many foods. It is, therefore, possible to use pigs to establish a database with digestibility values for human foods and by correcting digestibility values obtained in pigs for the basal endogenous losses of amino acids, it is possible to calculate true ileal digestibility values that are additive in mixed meals. As a consequence, the protein quality of a meal consisting of several food items can be calculated based on digestibility values obtained in pigs. Future work needs to focus on expanding existing databases for amino acid digestibility in foods to include more food items, which will make it possible to estimate the amino acid value of more mixed meals. It is also necessary that the amino acid values in mixed meals be related to requirements for digestible indispensable amino acids in the individuals consuming the meals. The current contribution describes the basic steps in determining amino acid digestibility in human foods using the pig as a model and also outlines future steps needed to further improve amino acid nutrition in humans.
Collapse
Affiliation(s)
- Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
2
|
Gomes TM, Sousa P, Campos C, Perestrelo R, Câmara JS. Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders. Foods 2024; 13:2289. [PMID: 39063373 PMCID: PMC11275480 DOI: 10.3390/foods13142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer's (AD) and Parkinson's (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer's, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Patrícia Sousa
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Catarina Campos
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
3
|
Moughan PJ, Lim WXJ. Digestible indispensable amino acid score (DIAAS): 10 years on. Front Nutr 2024; 11:1389719. [PMID: 39021594 PMCID: PMC11252030 DOI: 10.3389/fnut.2024.1389719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of the review is to revisit the findings of the 2011 Food and Agriculture Organization of the United Nations (FAO) Expert Consultation on Dietary Protein Quality Evaluation in Human Nutrition, and to report on progress on uptake of the findings. It is evident that since 2011 there has been a concerted research effort to enhance an understanding of the protein quality of foods. The validity of the growing pig ileal protein digestibility assay has been confirmed and numerous studies reported using the growing pig as a model to give true ileal amino acid digestibility values for foods as consumed by humans. This has allowed for the determination of digestible indispensable amino acid scores (DIAAS) for a range of foods. A new non-invasive true ileal amino acid digestibility assay in humans which can be applied in different physiological states, called the dual-isotope assay, has been developed and applied to determine the DIAAS values of foods. It is concluded that DIAAS is currently the most accurate score for routinely assessing the protein quality rating of single source proteins. In the future, the accuracy of DIAAS can be enhanced by improved information on: the ideal dietary amino acid balance including the ideal dispensable to indispensable amino acid ratio; dietary indispensable amino acid requirements; effects of processing on ileal amino acid digestibility and lysine bioavailability. There is a need to develop rapid, inexpensive in vitro digestibility assays. Conceptual issues relating DIAAS to food regulatory claims, and to holistic indices of food nutritional and health status are discussed. The first recommendation of the 2011 Consultation regarding treating each indispensable amino acid as an individual nutrient has received little attention. Consideration should be given to providing food label information on the digestible contents of specific indispensable amino acids.
Collapse
Affiliation(s)
- Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
4
|
Hammer L, Moretti D, Abbühl-Eng L, Kandiah P, Hilaj N, Portmann R, Egger L. Mealworm larvae ( Tenebrio molitor) and crickets ( Acheta domesticus) show high total protein in vitro digestibility and can provide good-to-excellent protein quality as determined by in vitro DIAAS. Front Nutr 2023; 10:1150581. [PMID: 37465141 PMCID: PMC10350632 DOI: 10.3389/fnut.2023.1150581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Edible insects, such as mealworms (Tenebrio molitor larvae; TM) and crickets (Acheta domesticus; AD), are a sustainable, protein-dense novel food with a favorable amino acid profile, which might be an alternative to animal proteins. To assess the protein quality of TM and AD, we assessed the digestible indispensable amino acid scores (DIAAS), considering individual amino acids and their ileal amino acid digestibility, using an in vitro model based on the INFOGEST digestion protocol. In addition, we evaluated if various processing and food preparation steps influenced the in vitro digestibility of individual amino acids and the in vitro DIAAS values of TM and AD and compared them to chicken breast as a reference of excellent protein quality. The total protein in vitro digestibility ranged from 91 to 99% for TM and from 79 to 93% for AD and was negatively affected by oven-drying and, to a lesser extent, by chitin-reduction. The in vitro DIAAS values were 113, 89, and 92 for chicken, blanched TM, and blanched AD, respectively, when considering the indispensable amino acid (IAA) requirements of young children between 6 months and 3 years. Across different processing and food preparation methods, the in vitro DIAAS values ranged between 59 and 89 for TM and between 40 and 92 for AD, with the lowest values found in chitin-reduced insects. Due to their similarities to chicken regarding protein composition, total protein in vitro digestibility, and in vitro DIAAS values, TM and AD might be an alternative to traditional animal proteins, provided that suitable processing and food preparation methods are applied. Our in vitro DIAAS results suggest that TM and AD can thus be considered good-quality protein sources for children older than 6 months. The DIAAS calculations are currently based on crude protein (total nitrogen × 6.25), resulting in an overestimation of insect protein content, and leading to an underestimation and potential misclassification of protein quality. The in vitro model applied in this study is a valuable tool for product development to optimize the protein quality of edible insects. Further studies are required to assess the in vivo DIAAS of insects in humans.
Collapse
Affiliation(s)
- Laila Hammer
- Agroscope Liebefeld-Posieux, Berne, Switzerland
- Department of Health, Swiss Distant University of Applied Sciences (FFHS), Brig, Switzerland
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Diego Moretti
- Department of Health, Swiss Distant University of Applied Sciences (FFHS), Brig, Switzerland
| | | | | | - Nikolin Hilaj
- Department of Health Sciences and Technology, Human Nutrition Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Lotti Egger
- Agroscope Liebefeld-Posieux, Berne, Switzerland
| |
Collapse
|
5
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
6
|
Rojas Conzuelo Z, Robyr R, Kopf-Bolanz KA. Optimization of Protein Quality of Plant-Based Foods Through Digitalized Product Development. Front Nutr 2022; 9:902565. [PMID: 35619962 PMCID: PMC9128549 DOI: 10.3389/fnut.2022.902565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
With the increasing availability of plant-based protein products that should serve as alternatives to animal-based protein products, it is necessary to develop not only environmentally friendly but also nutritious foods. Especially the protein content and quality are of concern in these products. The algorithm of NutriOpt was developed using linear programming to support the development of food products with a balanced amino acid profile while considering digestibility. The current version contains a database with 84 plant protein sources from different food groups (legumes, cereals, nuts, seeds) and with different grades of purification (flours, concentrates, isolates) from which NutriOpt can create mixtures with high protein quality while complying with constraints such as protein content, number of ingredients, and weight of the mixture. The program was tested through different case studies based on commercial plant-based drinks. It was possible to obtain formulations with a Protein Digestibility Corrected Amino Acid Score (PDCAAS) over 100 with ingredients and quantities potentially suitable for plant-based analogs. Our model can help to develop the second generation of plant-based product alternatives that can really be used as an alternative on long-term consumption. Further, there is still a great potential of expansion of the program for example to use press cakes or even to model whole menus or diets in the future.
Collapse
Affiliation(s)
- Zaray Rojas Conzuelo
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| | - Roger Robyr
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| | - Katrin A Kopf-Bolanz
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
7
|
Malla N, Nørgaard JV, Lærke HN, Heckmann LHL, Roos N. Some Insect Species Are Good-Quality Protein Sources for Children and Adults: Digestible Indispensable Amino Acid Score (DIAAS) Determined in Growing Pigs. J Nutr 2022; 152:1042-1051. [PMID: 35102372 DOI: 10.1093/jn/nxac019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Insect species are suitable for farming as "mini livestock" for human and animal consumption. It is important to assess the protein quality of relevant species to understand the potential of these novel protein sources in future sustainable food systems. OBJECTIVES We aimed to determine the protein quality of 5 insect species-lesser mealworm (LMW), yellow mealworm, house cricket (HC), banded cricket (BC), and black soldier fly-using the digestible indispensable amino acid score (DIAAS) in a pig model. METHODS Five diets were formulated to contain 10% insect crude protein (CP). A nitrogen (N)-free diet was included to estimate endogenous losses. In a 6 × 6 Latin square design, 6 ileal cannulated crossbred [Duroc × (Danish Landrace × Yorkshire)] male pigs with an initial body weight of 35 ± 2 kg were fed the 6 diets. Each diet was fed for 1 wk over 6 wk. Ileal digesta were collected for 8 h on days 5 and 7 each week. Analyzed CP, amino acid (AA) contents, and calculated values of standardized ileal digestibility for CP and AAs were used to assess the DIAAS of each insect. RESULTS The DIAAS for young children aged 6 mo-3 y and for older children, adolescents, and adults identified sulfur AAs (cysteine + methionine) as the first limiting AA in all 4 species of cricket and mealworm. For young children, both cricket species had DIAASs > 75 and for older children, adolescents, and adults both cricket species and LMW had DIAASs > 75. CONCLUSIONS Both cricket species (HC and BC) are classified as good-quality protein sources for young children aged 6 mo-3 y and for older children, adolescents, and adults. One mealworm species, LMW, is a good-quality protein source for older children, adolescents, and adults.
Collapse
Affiliation(s)
- Navodita Malla
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Jan V Nørgaard
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Helle N Lærke
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Van Mierlo K, Baert L, Bracquené E, De Tavernier J, Geeraerd A. Moving from pork to soy-based meat substitutes: evaluating environmental impacts in relation to nutritional values. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Berg EP, Stein HH. A Salute to PVT TIM HiLL: Indispensable Amino Acids and Global Human Health. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Students are taught the study mnemonic “PVT TIM HiLL” to memorize the 9 indispensable amino acids (IAA): phenylalanine, valine, threonine, tryptophan, isoleucine, methionine, histidine, leucine, and lysine. The Food and Agriculture Organization (FAO) recommended that IAA be treated as individual nutrients on food labels because “crude protein ” alone does not indicate protein quality. Protein quality—determined by Digestible Indispensable Amino Acid Score (DIAAS)—is calculated for 3 life stages: birth to 6 months, 6 months to 3 years, and 3 years and older. Foods possessing DIAAS greater than 100 are “excellent” protein quality, and those with DIAAS between 75 and 99 are “good,” whereas foods with DIAAS < 75 cannot make a protein claim. Processing, heating, and/or grinding can decrease or improve plant and animal IAA digestibility. For children 6 months to 3 years of age, ground pork, smoked-cooked bacon, cooked pork leg, cured ham, cooked pork loin, salami, beef/pork bologna, beef jerky, and medium and medium rare beef ribeye steaks can be described as “excellent.” A range of research has reported that cooked ground beef can be classified as “good” or “excellent,” whereas the Impossible® (Impossible Foods, Redwood City, CA) and Beyond® (Beyond Meat Inc., El Segundo, CA) meat-alternative burgers and well-done ribeye can be classified as “good ” sources of IAA for young children. For persons aged > 3 years, all meat categories but cooked ground beef can be classified “excellent” sources of IAA. For meat alternatives, Impossible Burger could be classified as “excellent,” but Beyond Burger could only claim to be “good.” Protein quality claims for individual food ingredients can be diminished when the food is consumed with a lower protein quality item such as a wheat flour bun. To provide meals that are adequate in all IAA, the protein quality in each food item must be determined. Mixed meals must be adjusted for protein quality by combining low-quality proteins (present in cereals and grains) with higher-quality proteins (present in foods of animal origin).
Collapse
Affiliation(s)
- Eric P. Berg
- North Dakota State University Department of Animal Sciences
| | - Hans H. Stein
- University of Illinois Urbana-Champaign Department of Animal Sciences
| |
Collapse
|
10
|
Fanelli NS, Bailey HM, Thompson TW, Delmore R, Nair MN, Stein HH. Digestible indispensable amino acid score (DIAAS) is greater in animal-based burgers than in plant-based burgers if determined in pigs. Eur J Nutr 2021; 61:461-475. [PMID: 34476569 DOI: 10.1007/s00394-021-02658-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Determine digestible indispensable amino acid score (DIAAS) for animal- and plant-based burgers and test the hypothesis that DIAAS calculated for a burger and a burger bun is additive in a combined meal. METHODS Ten ileal cannulated gilts were fed experimental diets for six 9-d periods with ileal digesta being collected on d 8 and 9 of each period. Six diets contained a burger (i.e., 80% lean beef, 93% lean beef, 80% lean pork, Impossible Burger, or Beyond Burger) or a burger bun as the sole source of crude protein and amino acids. Three additional diets were based on a combination of the bun and 80% beef, pork, or Impossible Burger. A nitrogen-free diet was also used. The DIAAS for all ingredients and mixed meals was calculated for children from 6 months to 3 years and for individuals older than 3 years, and DIAAS for combined meals was predicted from individual ingredient DIAAS. RESULTS The 93% lean beef and the pork burgers had greater (P < 0.05) DIAAS than the plant-based burgers for both age groups. The 80% lean beef burger had greater (P < 0.05) DIAAS than the plant burgers for children from 6 months to 3 years, and greater (P < 0.05) DIAAS than the Beyond Burger for individuals older than 3 years. There were no differences between the measured and predicted DIAAS. CONCLUSIONS The protein quality of animal-based burgers is greater than that of plant-based burgers. However, for individuals older than 3 years, the Impossible Burger has comparable protein quality to the 80% lean beef burger. The DIAAS obtained from individual foods is additive in mixed meals.
Collapse
Affiliation(s)
- Natalia S Fanelli
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Hannah M Bailey
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Tyler W Thompson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert Delmore
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mahesh Narayanan Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
|
12
|
Abstract
PURPOSE OF REVIEW The current review provides an update on the recent research developments regarding amino acid bioavailability in conditions of both good health and gut disorders. RECENT FINDINGS Determination of amino acid bioavailability is complex and invasive. Minimally invasive methods using stable isotopes have been developed for humans. Data were collected in different models - humans, pigs and rats with various procedures - leading to interstudy variability. They mainly focused on either plant protein or the effect of food processing on animal protein. Plant protein in their original food matrix (legumes, grains, nuts) are generally less digestible (about 80%) than animal protein (meat, egg, milk; about 93%). Food processing has a limited impact on animal protein but its effect might be higher on plant protein. Few studies have documented the effect of gut disorders on protein digestibility, except in gastric bypass where paradoxical effects were reported. Data are needed to identify the amplitude of protein malabsorption in diseases such as inflammatory bowel disease or environmental enteric dysfunction. SUMMARY The past 5 years have seen a renewed interest in amino acid bioavailability in view of assessing protein quality to support current shifts in protein sourcing. Methodological developments have been performed and several studies have reported values in various models. The question of protein digestibility in gut disorders remains poorly addressed.
Collapse
Affiliation(s)
- Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | | |
Collapse
|
13
|
Nutrient-dense protein as a primary dietary strategy in healthy ageing: please sir, may we have more? Proc Nutr Soc 2020; 80:264-277. [PMID: 33050965 DOI: 10.1017/s0029665120007892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A progressive decrement in muscle mass and muscle function, sarcopoenia, accompanies ageing. The loss of skeletal muscle mass and function is the main feature of sarcopoenia. Preventing the loss of muscle mass is relevant since sarcopoenia can have a significant impact on mobility and the quality of life of older people. Dietary protein and physical activity have an essential role in slowing muscle mass loss and helping to maintain muscle function. However, the current recommendations for daily protein ingestion for older persons appear to be too low and are in need of adjustment. In this review, we discuss the skeletal muscle response to protein ingestion, and review the data examining current dietary protein recommendations in the older subjects. Furthermore, we review the concept of protein quality and the important role that nutrient-dense protein (NDP) sources play in meeting overall nutrient requirements and improving dietary quality. Overall, the current evidence endorses an increase in the daily ingestion of protein with emphasis on the ingestion of NDP choices by older adults.
Collapse
|
14
|
Herreman L, Nommensen P, Pennings B, Laus MC. Comprehensive overview of the quality of plant- And animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci Nutr 2020; 8:5379-5391. [PMID: 33133540 PMCID: PMC7590266 DOI: 10.1002/fsn3.1809] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023] Open
Abstract
Indispensable amino acid (IAA) composition and standardized ileal digestibility (SID) of five animal- and 12 plant-based proteins were used to calculate their respective Digestible Indispensable Amino Score (DIAAS) according to the three age categories defined by the Food and Agriculture Organization (FAO). Mean IAA content and mean SID obtained from each protein dataset were subsequently used to simulate optimal nutritional quality of protein mixtures. Datasets revealed considerable variation in DIAAS within the same protein source and among different protein sources. Among the selected protein sources, and based on the 0.5- to 3-year-old reference pattern, pork meat, casein, egg, and potato proteins are classified as excellent quality proteins with an average DIAAS above 100. Whey and soy proteins are classified as high-quality protein with an average DIAAS ≥75. Gelatin, rapeseed, lupin, canola, corn, hemp, fava bean, oat, pea, and rice proteins are classified in the no quality claim category (DIAAS <75). Potato, soy, and pea proteins can complement a broad range of plant proteins, leading to higher DIAAS when supplied in the form of protein mixtures and at specific ratios. Such complementarity highlights the potential to achieve an optimal nutritional efficiency with plant proteins alone.
Collapse
|