1
|
Setton J, Zinda M, Riaz N, Durocher D, Zimmermann M, Koehler M, Reis-Filho JS, Powell SN. Synthetic Lethality in Cancer Therapeutics: The Next Generation. Cancer Discov 2021; 11:1626-1635. [PMID: 33795234 PMCID: PMC8295179 DOI: 10.1158/2159-8290.cd-20-1503] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/01/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Synthetic lethality (SL) provides a conceptual framework for tackling targets that are not classically "druggable," including loss-of-function mutations in tumor suppressor genes required for carcinogenesis. Recent technological advances have led to an inflection point in our understanding of genetic interaction networks and ability to identify a wide array of novel SL drug targets. Here, we review concepts and lessons emerging from first-generation trials aimed at testing SL drugs, discuss how the nature of the targeted lesion can influence therapeutic outcomes, and highlight the need to develop clinical biomarkers distinct from those based on the paradigms developed to target activated oncogenes. SIGNIFICANCE: SL offers an approach for the targeting of loss of function of tumor suppressor and DNA repair genes, as well as of amplification and/or overexpression of genes that cannot be targeted directly. A next generation of tumor-specific alterations targetable through SL has emerged from high-throughput CRISPR technology, heralding not only new opportunities for drug development, but also important challenges in the development of optimal predictive biomarkers.
Collapse
Affiliation(s)
- Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
3
|
Digitizable therapeutics for decentralized mitigation of global pandemics. Sci Rep 2019; 9:14345. [PMID: 31586137 PMCID: PMC6778202 DOI: 10.1038/s41598-019-50553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/15/2019] [Indexed: 01/31/2023] Open
Abstract
When confronted with a globally spreading epidemic, we seek efficient strategies for drug dissemination, creating a competition between supply and demand at a global scale. Propagating along similar networks, e.g., air-transportation, the spreading dynamics of the supply vs. the demand are, however, fundamentally different, with the pathogens driven by contagion dynamics, and the drugs by commodity flow. We show that these different dynamics lead to intrinsically distinct spreading patterns: while viruses spread homogeneously across all destinations, creating a concurrent global demand, commodity flow unavoidably leads to a highly uneven spread, in which selected nodes are rapidly supplied, while the majority remains deprived. Consequently, even under ideal conditions of extreme production and shipping capacities, due to the inherent heterogeneity of network-based commodity flow, efficient mitigation becomes practically unattainable, as homogeneous demand is met by highly heterogeneous supply. Therefore, we propose here a decentralized mitigation strategy, based on local production and dissemination of therapeutics, that, in effect, bypasses the existing distribution networks. Such decentralization is enabled thanks to the recent development of digitizable therapeutics, based on, e.g., short DNA sequences or printable chemical compounds, that can be distributed as digital sequence files and synthesized on location via DNA/3D printing technology. We test our decentralized mitigation under extremely challenging conditions, such as suppressed local production rates or low therapeutic efficacy, and find that thanks to its homogeneous nature, it consistently outperforms the centralized alternative, saving many more lives with significantly less resources.
Collapse
|
4
|
ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers (Basel) 2017; 9:cancers9040033. [PMID: 28417948 PMCID: PMC5406708 DOI: 10.3390/cancers9040033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.
Collapse
|
5
|
Roth P, Weller M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol 2015; 16 Suppl 8:viii14-9. [PMID: 25342600 DOI: 10.1093/neuonc/nou222] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and activating mutations are common findings in glioblastomas. EGFR is at the top of a downstream signaling cascade that regulates important characteristics of glioblastoma cells, including cellular proliferation, migration, and survival. Targeting EGFR has therefore been regarded as a promising therapeutic strategy in glioblastoma for decades. However, although various pharmacological inhibitors and anti-EGFR antibodies are available, the antiglioma activity of these agents has been largely limited to preclinical models, whereas their administration to glioblastoma patients was characterized by lack of clinical benefit. Comprehensive efforts have been made within the last years to understand the underlying mechanisms that confer resistance to EGFR inhibition in glioma cells. The absence of well-known mutations that predict response to EGFR tyrosine kinase inhibitors (TKIs) in gliomas as well as the presence of redundant and alternative compensatory pathways are among the most important escape mechanisms that prevent potent antiglioma effects of EGFR-targeting drugs. Accordingly, an increasing number of in vitro and in vivo studies are aimed at overcoming this resistance by combinatorial approaches using anti-EGFR treatment together with one or more additional drugs. Novel insights into the molecular mechanisms mediating resistance to anti-EGFR treatment and promising combinatorial approaches may help to better define a future role for EGFR inhibition in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| | - Michael Weller
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| |
Collapse
|
6
|
Padfield E, Ellis HP, Kurian KM. Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma. Front Oncol 2015; 5:5. [PMID: 25688333 PMCID: PMC4310282 DOI: 10.3389/fonc.2015.00005] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/09/2015] [Indexed: 01/23/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) and EGFRvIII analysis is of current interest in glioblastoma – the most common malignant primary CNS tumor, because of new EGFRvIII vaccine trials underway. EGFR activation in glioblastoma promotes cellular proliferation via activation of MAPK and PI3K–Akt pathways, and EGFRvIII is the most common variant, leading to constitutively active EGFR. This review explains EGFR and EGFRvIII signaling in GBM; describes targeted therapy approaches to date including tyrosine kinase inhibitor, antibody-based therapies, vaccines and pre-clinical RNA-based therapies, and discusses the difficulties encountered with these approaches including pathway redundancy and intratumoral heterogeneity.
Collapse
Affiliation(s)
| | - Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| |
Collapse
|
7
|
Abstract
Cancers arise through the progression of multiple genetic and epigenetic defects that lead to deregulation of numerous signalling networks. However, the last decade has seen the development of the concept of 'oncogene addiction', where tumours appear to depend on a single oncogene for survival. RNAi has provided an invaluable tool in the identification of these oncogenes and oncogene-dependent cancers, and also presents great potential as a novel therapeutic strategy against them. Although RNAi therapeutics have demonstrated effective killing of oncogene-dependent cancers in vitro, their efficacy in vivo is severely limited by effective delivery systems. Several virus-based RNAi delivery strategies have been explored, but problems arose associated with high immunogenicity, random genome integration and non-specific targeting. This has directed efforts towards non-viral formulations, including delivery systems based on virus-like particles, liposomes and cationic polymers, which can circumvent some of these problems by immunomasking and the use of specific tumour-targeting ligands. This review outlines the prevalence of oncogene-dependent cancers, evaluates the potential of RNAi-based therapeutics and assesses the relative strengths and weaknesses of different approaches to targeted RNAi delivery.
Collapse
|
8
|
Abdel-Aziz MM. Clinical significance of serum p53 and epidermal growth factor receptor in patients with acute leukemia. Asian Pac J Cancer Prev 2013; 14:4295-9. [PMID: 23991992 DOI: 10.7314/apjcp.2013.14.7.4295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pretreatment serum p53 and epidermal growth factor receptor (EGFR) were assessed using enzyme-linked immunosorbent assay (ELISA) in patients with acute leukemia to analysis their roles in characterization of different subtypes of the disease. MATERIALS AND METHODS Serum samples from thirty two patients with acute myeloid leukemia (AML) and fourteen patients with acute lymphoid leukemia (ALL) were analysed, along with 24 from healthy individuals used as a control group. RESULTS The results demonstrated a significant increase of serum p53 and EGFR in patients with AML (p<0.0001) compared to the control group. Also, the results showed a significant increase of both markers in patients with ALL (p<0.05, p<0.0001 respectively). Sensitivities and specificities for these variables were 52% and 100% for p53, and 73.9%, 95.8% for EGFR. Serum p53 and EGFR could successfully differentiate between M4 and other AML subtypes, while these variables failed to discriminate among ALL subtypes. A positive significant correlation was noted between p53 and EGFR. Negative significant correlations were observed between these variables and both of hemoglobin (Hg) content and RBC count. CONCLUSIONS Mutant p53 and EGFR are helpful serological markers for diagnosis of patients with AML or ALL and can aid in characterization of disease. Moreover, these markers may reflect carcinogenesis mechanisms.
Collapse
|
9
|
Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013; 34:8690-707. [PMID: 23953842 DOI: 10.1016/j.biomaterials.2013.07.100] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Collapse
Affiliation(s)
- Chetan Yewale
- Pharmacy Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390 001, Gujarat, India
| | | | | | | | | |
Collapse
|
10
|
Epidermal growth factor receptor as a therapeutic target in glioblastoma. Neuromolecular Med 2013; 15:420-34. [PMID: 23575987 DOI: 10.1007/s12017-013-8229-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023]
Abstract
Glioblastoma represents one of the most challenging problems in neurooncology. Among key elements driving its behavior is the transmembrane epidermal growth factor receptor family, with the first member epidermal growth factor receptor (EGFR) centered in most studies. Engagement of the extracellular domain with a ligand activates the intracellular tyrosine kinase (TK) domain of EGFR, leading to autophosphorylation and signal transduction that controls proliferation, gene transcription, and apoptosis. Oncogenic missense mutations, deletions, and insertions in the EGFR gene are preferentially located in the extracellular domain in glioblastoma and cause constitutive activation of the receptor. The mutant EGFR may also transactivate other cell surface molecules, such as additional members of the EGFR family and the platelet-derived growth factor receptor, which ignite signaling cascades that synergize with the EGFR-initiated cascade. Because of the cell surface location and increased expression of the receptor along with its important biological function, EGFR has triggered much effort for designing targeted therapy. These approaches include TK inhibition, monoclonal antibody, vaccine, and RNA-based downregulation of the receptor. Treatment success requires that the drug penetrates the blood-brain barrier and has low systemic toxicity but high selectivity for the tumor. While the blockade of EGFR-dependent processes resulted in experimental and clinical treatment success, cells capable of using alternative signaling ultimately escape this strategy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways will likely enhance efficacy. Studies on EGFR in glioblastoma have revealed much information about the complexity of gliomagenesis and also facilitated the development of strategies for targeting drivers of tumor growth and combination therapies with increasing complexity.
Collapse
|
11
|
Zhang L, Yang L, Li JJ, Sun L. Potential use of nucleic acid-based agents in the sensitization of nasopharyngeal carcinoma to radiotherapy. Cancer Lett 2012; 323:1-10. [DOI: 10.1016/j.canlet.2012.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
|
12
|
Spillner E, Plum M, Blank S, Miehe M, Singer J, Braren I. Recombinant IgE antibody engineering to target EGFR. Cancer Immunol Immunother 2012; 61:1565-73. [PMID: 22674055 PMCID: PMC11028481 DOI: 10.1007/s00262-012-1287-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 05/18/2012] [Indexed: 02/03/2023]
Abstract
Monoclonal antibodies have become a mainstay for the targeted treatment of cancer today. Some of the most successful targets of monoclonal antibodies are constituted by the epidermal growth factor receptor family spearheaded by the epidermal growth factor receptor (EGFR). Prompted by studies indicating that IgE compared to IgG may harness alternate effector functions to eradicate malignant cells, we addressed the establishment, engineering, and the potential tumoricidal effects of recombinant anti-EGFR IgE. Therefore, two different therapeutic EGFR-specific antibodies, 225 and 425, were chosen for re-cloning into different chimeric IgE and IgG formats and produced in human cells. Simultaneous antibody binding to the sEGFR demonstrated accessibility of both epitopes for recombinant IgE. Proliferation and cytotoxicity assays demonstrated signal blocking and effector mediating capability of IgE isotypes. Pronounced degranulation in the presence of sEGFR upon activation exclusively with two IgE antibodies verified the epitope proximity and provides evidence that tumor-targeting by anti-EGFR IgE is safe with regard to soluble target structures. Degranulation mediated by tumor cells expressing EGFR could be demonstrated for singular and combined IgE antibodies; however, use of two IgE specificities was not superior to use of one IgE alone. The data suggest that the surface distribution of EGFR is optimally suited to mount a robust effector cell trigger and corroborate the potential and specificity of the IgE/IgE receptor network to react to xenobiotic or pathogenic patterns for targeting malignancies.
Collapse
Affiliation(s)
- Edzard Spillner
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Del Vecchio CA, Li G, Wong AJ. Targeting EGF receptor variant III: tumor-specific peptide vaccination for malignant gliomas. Expert Rev Vaccines 2012; 11:133-44. [PMID: 22309662 DOI: 10.1586/erv.11.177] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly of the human brain cancers. The EGF receptor is often amplified in GBM and provides a potential therapeutic target. However, targeting the normal receptor is complicated by its nearly ubiquitous and high level of expression in certain tissues. A naturally occurring deletion mutant of the EGF receptor, EGFRvIII, is a constitutively active variant originally identified in a high percentage of brain cancer cases, and more importantly is rarely found in normal tissue. A peptide vaccine, rindopepimut (CDX-110, Celldex Therapeutics), is directed against the novel exon 1-8 junction produced by the EGFRvIII deletion, and it has shown high efficacy in preclinical models. Recent Phase II clinical trials in patients with newly diagnosed GBM have shown EGFRvIII-specific immune responses and significantly increased time to progression and overall survival in those receiving vaccine therapy, as compared with published results for standard of care. Rindopepimut therefore represents a very promising therapy for patients with GBM.
Collapse
|
14
|
Camara-Quintana JQ, Nitta RT, Li G. Pathology: Commonly Monitored Glioblastoma Markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 2012; 23:237-46, viii. [DOI: 10.1016/j.nec.2012.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Farias-Eisner G, Bank AM, Hwang BY, Appelboom G, Piazza MA, Bruce SS, Sander Connolly E. Glioblastoma biomarkers from bench to bedside: advances and challenges. Br J Neurosurg 2011; 26:189-94. [PMID: 22176646 DOI: 10.3109/02688697.2011.629698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour, with few available therapies providing significant improvements in mortality. Biomarkers, which are defined by the National Institutes of Health as 'characteristics that are objectively measured and evaluated as indicators of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention', have the potential to play valuable roles in the diagnosis and treatment of GBM. Although GBM biomarker research is still in its early stages because of the tumour's complex pathophysiology, a number of potential markers have been identified which can be measured in either brain tissue or blood serum. In conjunction with other clinical data, particularly neuroimaging modalities such as MRI, these proteins could contribute to the clinical management of GBM by helping to classify tumours, predict prognosis and assess treatment response. In this article, we review the current understanding of GBM pathophysiology and recent advances in GBM biomarker research, and discuss the potential clinical implications of promising biomarkers. A better understanding of GBM pathophysiology will allow researchers and clinicians to identify optimal biomarkers and methods of interpretation, leading to advances in tumour classification, prognosis prediction and treatment assessment.
Collapse
Affiliation(s)
- Gina Farias-Eisner
- Department of Neurological Surgery, Cerebrovascular Lab, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3:623-36. [PMID: 21953712 PMCID: PMC3377106 DOI: 10.1002/emmm.201100176] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 12/21/2022] Open
Abstract
A decade has elapsed since the concept of oncogene addiction was first proposed. It postulates that – despite the diverse array of genetic lesions typical of cancer – some tumours rely on one single dominant oncogene for growth and survival, so that inhibition of this specific oncogene is sufficient to halt the neoplastic phenotype. A large amount of evidence has proven the pervasive power of this notion, both in basic research and in therapeutic applications. However, in the face of such a considerable body of knowledge, the intimate molecular mechanisms mediating this phenomenon remain elusive. At the clinical level, successful translation of the oncogene addiction model into the rational and effective design of targeted therapeutics against individual oncoproteins still faces major obstacles, mainly due to the emergence of escape mechanisms and drug resistance. Here, we offer an overview of the relevant literature, encompassing both biological aspects and recent clinical insights. We discuss the key advantages and pitfalls of this concept and reconsider it as an illustrative principle to guide post-genomic cancer research and drug development.
Collapse
Affiliation(s)
- Davide Torti
- Laboratory of Molecular Pharmacology, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo (Torino), Italy
| | | |
Collapse
|
17
|
Karpel-Massler G, Wirtz CR, Halatsch ME. Ribozyme-mediated inhibition of 801-bp deletion-mutant epidermal growth factor receptor mRNA expression in glioblastoma multiforme. Molecules 2010; 15:4670-8. [PMID: 20657384 PMCID: PMC6257566 DOI: 10.3390/molecules15074670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022] Open
Abstract
The epidermal growth factor receptor (HER1/EGFR) is known to be disregulated in a large subgroup of glioblastoma multiforme cases. Disregulation of HER1/EGFR is related to malignant transformation and tumor growth in various human cancers, including malignant glioma. One mechanism that may lead to disregulated HER1/EGFR signaling is the intrinsic alteration of the receptor structure due to mutational changes. The most common mutant form of HER1/EGFR, named variant III (EGFRvIII), results from an 801 bp in-frame deletion in the DNA sequence encoding the extracellular ligand-binding domain. Independent of ligand-binding, EGFRvIII is constitutively activated and beyond external control. Since its cellular expression was shown to relate enhanced tumorigenicity, various therapeutic strategies were developed to target EGFRvIII, including monoclonal antibodies, vaccination therapies and small-molecule tyrosine kinase inhibitors. In this review, we focus on ribozyme-mediated inhibition of EGFRvIII messenger RNA expression as a gene therapeutic approach for EGFRvIII-expressing glioblastoma multiforme.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Neurosurgery, University of Ulm Medical School, Steinhövelstr 9, D-89075 Ulm, Germany.
| | | | | |
Collapse
|
18
|
Abstract
Epidermal growth factor is a 170-kd protein that binds to a specific tyrosine kinase receptor, epidermal growth factor receptor (EGFR), on the cell surface. EGFR function is dysregulated in various malignancies including nonsmall cell lung cancer (NSCLC) leading to activation of several signal transduction pathways including K-RAS, PIK3, and STAT3 and STAT5, that promote cell cycle progression, proliferation, invasion, angiogenesis, and inhibit apoptosis. EGFR overexpression is seen in a majority of cases of NSCLC, but its prognostic role is controversial. EGFR inhibitors currently undergoing clinical trials in NSCLC include monoclonal antibodies or small molecule tyrosine kinase inhibitors. The only EGFR inhibitor currently approved for the treatment of NSCLC is erlotinib, a small molecule tyrosine kinase inhibitor. Although women, nonsmokers, patients with adenocarcinoma and patients with Asian ethnicity seem to have better outcomes with erlotinib, the factors predictive for response to these agents are currently the focus of investigation.
Collapse
|
19
|
Ye F, Gao Q, Cai MJ. Therapeutic targeting of EGFR in malignant gliomas. Expert Opin Ther Targets 2010; 14:303-16. [DOI: 10.1517/14728221003598948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Gadji M, Crous AMT, Fortin D, Krcek J, Torchia M, Mai S, Drouin R, Klonisch T. EGF receptor inhibitors in the treatment of glioblastoma multiform: Old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol 2009; 625:23-30. [DOI: 10.1016/j.ejphar.2009.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/27/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022]
|
21
|
Huang L, De Baetselier P, Beyaert R. Targeting the EGF receptor ectodomain in the context of cancer. Expert Opin Ther Targets 2009; 13:1347-61. [DOI: 10.1517/14728220903277264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Karpel-Massler G, Schmidt U, Unterberg A, Halatsch ME. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res 2009; 7:1000-12. [PMID: 19584260 DOI: 10.1158/1541-7786.mcr-08-0479] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade gliomas account for the majority of intra-axial brain tumors. Despite abundant therapeutic efforts, clinical outcome is still poor. Thus, new therapeutic approaches are intensely being investigated. Overexpression of the epidermal growth factor receptor (HER1/EGFR) is found in various epithelial tumors and represents one of the most common molecular abnormalities seen in high-grade gliomas. Dysregulated HER1/EGFR is found in 40% to 50% of glioblastoma, the most malignant subtype of glioma. Several agents such as tyrosine kinase (TK) inhibitors, antibodies, radio-immuno conjugates, ligand-toxin conjugates, or RNA-based agents have been developed to target HER1/EGFR or its mutant form, EGFRvIII. To date, most agents are in various stages of clinical development. Clinical data are sparse but most advanced for TK inhibitors. Although data from experimental studies seem promising, proof of a significant clinical benefit is still missing. Among the problems that have to be further addressed is the prediction of the individual patient's response to HER1/EGFR-targeted therapeutics based on molecular determinants. It is quite possible that blocking HER1/EGFR alone will not sufficiently translate into a clinical benefit. Therefore, a multiple target approach concomitantly aimed at different molecular sites might be a favorable concept. This review focuses on current HER1/EGFR-targeted therapeutics and their development for high-grade gliomas.
Collapse
|
23
|
|
24
|
Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 2008; 21:3214-31. [PMID: 18079171 DOI: 10.1101/gad.1609907] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In pugilistic parlance, the one-two punch is a devastating combination of blows, with the first punch setting the stage and the second delivering the knock-out. This analogy can be extended to molecularly targeted cancer therapies, with oncogene addiction serving to set the stage for tumor cell killing by a targeted therapeutic agent. While in vitro and in vivo examples abound documenting the existence of this phenomenon, the mechanistic underpinnings that govern oncogene addiction are just beginning to emerge. Our current inability to fully exploit this weakness of cancer cells stems from an incomplete understanding of oncogene addiction, which nonetheless represents one of the rare chinks in the formidable armor of cancer cells.
Collapse
Affiliation(s)
- Sreenath V Sharma
- Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
25
|
Ceresa BP, Vanlandingham PA. Molecular Mechanisms that Regulate Epidermal Growth Factor Receptor Inactivation. Clin Med Oncol 2008; 2:47-61. [PMID: 21892266 PMCID: PMC3161635 DOI: 10.4137/cmo.s498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is the prototypical receptor tyrosine kinase (RTK). These cell surface receptors are integral membrane proteins that bind ligands on their extracellular domain and relay that information to within the cell. The activated EGFR regulates diverse cell fates such as growth, proliferation, differentiation, migration, and apoptosis. These signaling properties are important for the appropriate development and maintenance of an organism. However, when inappropriately controlled, due to EGFR overexpression or hyperactivation, these signaling events are characteristic of many cancers. It remains unclear whether the uncontrolled EGFR activity leads to cell transformation or is a consequence of cell transformation. Regardless of the cause, increased EGFR activity serves both as a biomarker in the diagnosis of some cancers and is a molecular target for anti-cancer therapies. The promising results with current anti-EGFR therapies suggest that the receptor is a viable molecular target for a limited number of applications. However, to become an effective therapeutic target for other cancers that have elevated levels of EGFR activity, current approaches for inhibiting EGFR signaling will need to be refined. Here we describe the molecular mechanisms that regulate EGFR inactivation and discuss their potential as therapeutic targets for inhibiting EGFR signaling.
Collapse
Affiliation(s)
- Brian P Ceresa
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190
| | | |
Collapse
|
26
|
Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol 2007; 39:1416-31. [PMID: 17596994 DOI: 10.1016/j.biocel.2007.05.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 02/08/2023]
Abstract
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.
Collapse
Affiliation(s)
- Roberto Bianco
- Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Universitá di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | | | |
Collapse
|
27
|
Schiavon G, Santini D, Vincenzi B, Tonini G. European Society for Medical Oncology 2006: meeting highlights on targeted therapies. Istanbul, Turkey, 29 September-3 October 2006. Expert Opin Biol Ther 2007; 7:269-78. [PMID: 17250464 DOI: 10.1517/14712598.7.2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable advances in our understanding of the complex cellular, molecular and genetic mechanisms underlying tumorigenesis over the last decade have contributed to the development of novel and improved targeted therapies in cancer intervention. These novel therapies interfere specifically with signaling pathways essential for tumor cell proliferation, survival and migration, they may be able to inhibit tumor growth and metastasis effectively, with fewer severe adverse events than seen with existing chemotherapeutic interventions, which have a narrow therapeutic index and are associated with severe toxic side effects. Among the most recent advances in anticancer treatments are therapies that target novel cellular entities, such as epidermal growth factor receptor and vascular endothelial growth factor. Monoclonal antibodies and protein tyrosine kinase inhibitors represent two classes among these promising new therapeutic interventions. During the European Society for Medical Oncology Congress 2006 (Istanbul, Turkey, 29 September-3 October) new and emerging biological therapies have represented a central argument of research. These highlights summarize the most interesting studies concerning molecular agents, such as panitumumab, lapatinib, sunitinib, sorafenib, erlotinib, bevacizumab and cetuximab, to provide a comprehensive overview of the important points and news about this area of research discussed during the meeting.
Collapse
Affiliation(s)
- Gaia Schiavon
- University Campus Bio-Medico, Medical Oncology, Via Emilio Longoni, 47, 00155 Rome, Italy
| | | | | | | |
Collapse
|
28
|
Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta Rev Cancer 2006; 1766:120-39. [PMID: 16889899 DOI: 10.1016/j.bbcan.2006.06.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/08/2006] [Accepted: 06/15/2006] [Indexed: 12/22/2022]
Abstract
The epidermal growth factor receptor (ErbB1 or EGFR) has been found to be altered in a variety of human cancers. A number of agents targeting these receptors, including specific antibodies directed against the ligand-binding domain of the receptor and small molecules that inhibit kinase activity are either in clinical trials or are already approved for clinical treatment. However, identifying patients that are likely to respond to such treatments has been challenging. As a consequence, it still remains important to identify additional alterations of the tumor cell that contribute to the response to EGFR-targeted agents. While EGFR-mediated signalling pathways have been well established, there is still a rather limited understanding of how intracellular protein-protein interactions, ubiquitination, endocytosis and subsequent degradation of EGFR contribute to the determination of sensitivity to EGFR targeting agents and are emerging areas of investigation. This review primarily focuses on the basic signal transduction pathways mediated through activated membrane bound and/or endosomal EGFR and emphasizes the need to co-target additional proteins that function either upstream or downstream of EGFR to improve cancer therapy.
Collapse
Affiliation(s)
- Sinto Sebastian
- Clinical Experimental Oncology Laboratory, National Cancer Institute, Via Amendola, 209, 70126, Bari, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Oliveira S, van Bergen en Henegouwen PMP, Storm G, Schiffelers RM. Molecular biology of epidermal growth factor receptor inhibition for cancer therapy. Expert Opin Biol Ther 2006; 6:605-17. [PMID: 16706607 DOI: 10.1517/14712598.6.6.605] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the role of the epidermal growth factor receptor (EGFR) in cellular signalling processes underlying malignancy has enabled the development of rationally designed EGFR-targeted therapeutics. Strategies have been devised to interfere with the EGFR signalling at three different levels: at the extracellular level, competing with ligand binding; at the intracellular level, inhibiting the activation of the tyrosine kinase; or at the mRNA level, modulating the expression of the EGFR protein. Each of these strategies has proven to have an antitumour effect mediated by events such as inhibition of cell proliferation, induction of apoptosis, decrease of cellular invasion and migration; and/or inhibition of angiogenesis. Furthermore, the combination of these strategies with traditional chemotherapy or radiotherapy has generally resulted in enhanced antitumour effects. Likewise, the benefit of interfering simultaneously with different signalling pathways has been documented to improve tumour growth inhibition. These preclinical results have encouraged clinical studies that led to the FDA approval of three drugs. However, finding the perfect strategy for each individual patient appears to be a limiting factor, demanding further research to be able to generate relevant molecular expression profiles on a case-to-case basis. Taken together, a successful EGFR inhibition will require a better understanding of signalling pathways in combination with the development of rationally designed effective molecules.
Collapse
Affiliation(s)
- Sabrina Oliveira
- Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, PO Box 80.082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Abdel-Aziz MM, Lotfy M, El-Kady IM, Abozaid M. Mutant p53 protein in the serum of patients with colorectal cancer: Correlation with the level of carcinoembryonic antigen and serum epidermal growth factor receptor. ACTA ACUST UNITED AC 2006; 32:329-35. [PMID: 16632243 DOI: 10.1016/j.cdp.2005.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2005] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Enzyme-linked immunosorbent assay (ELISA) was used for analysis of serum mutant p53 protein, carcinoembryonic antigen (CEA), and epidermal growth factor receptor (EGFR). Serum samples were obtained from 48 patients with colorectal cancer (CRC) and a control group of twenty healthy individuals. RESULTS The results demonstrated a significant increase of serum mutant p53, EGFR, and CEA levels in CRC patients compared to the control group (P<0.001 for each). Mutant p53 protein was significantly different in the different CRC grades (P=0.028). p53, CEA, and EGFR can differentiate successfully between different CRC grades and normal control (P<0.001 for each). Sensitivities of p53, CEA, and EGFR were 39.6, 31, and 71%, respectively. There was no correlation between CEA, EGFR, and p53 indicating that these variables were independent. Positive status of serum CEA and (or) p53 was found in 29 out of 48 (60%) patients. Also, positive status of serum CEA and (or) EGFR was found in 39 out of 48 (81%) patients. CONCLUSION Thus, the simultaneous determination of p53 or EGFR combined with the CEA may increase the sensitivity to diagnose CRC patients and may aid in disease prognosis.
Collapse
Affiliation(s)
- Mohamed M Abdel-Aziz
- Biotechnology Research Laboratories Division, Gastro-Entrology Surgery Center, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
31
|
Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 2006; 32:74-89. [PMID: 16488082 DOI: 10.1016/j.ctrv.2006.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/22/2005] [Accepted: 01/08/2006] [Indexed: 11/25/2022]
Abstract
Gliomas are the most common primary central nervous system tumours and about 55% are glioblastoma multiforme (GBM). Between 40% and 50% of GBM have dysregulated epidermal growth factor receptor (HER1/EGFR), and almost half of these co-express the mutant receptor subtype EGFRvIII, which may contribute to the aggressive and refractory course of GBM. Limited therapeutic options exist for GBM, and recurrence is common. Standard therapy is surgical resection, where possible, and radiotherapy. Adjuvant chemotherapy provides a modest survival benefit. New therapies are essential, and HER1/EGFR-targeted agents may provide a viable strategy. The HER1/EGFR tyrosine kinase inhibitors erlotinib and gefitinib are in advanced clinical development for glioma, and a number of trials are in progress, or have recently been completed. Preliminary results with gefitinib show no objective responses, but do provide evidence of disease control. In contrast, preliminary data with erlotinib appear more encouraging. Erlotinib inhibits wild-type HER1/EGFR and EGFRvIII, which may underlie its promising clinical activity. Other HER1/EGFR-targeted agents are also being investigated for glioma, including monoclonal antibodies, radio-immuno conjugates, ligand-toxin conjugates, antisense oligonucleotides and ribozymes. Further studies will define their clinical potential and hopefully provide new, effective treatments for GBM and other malignant brain tumours.
Collapse
Affiliation(s)
- Marc-Eric Halatsch
- Department of Neurosurgery, University of Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in the carcinogenesis of many human malignancies and is therefore an attractive target against which anticancer therapy may be effective. At present, there are two ways in which this may be achieved clinically: antibodies against EGFR and inhibitors of the EGFR tyrosine kinase. This review describes presently approved agents cetuximab (monoclonal EGFR antibody), gefitinib and erlotinib (EGFR tyrosine kinase inhibitors) in detail. Efficacy data for these agents in various human malignancies is presented. Various other agents that are in the early stages of development at present have also been mentioned.
Collapse
Affiliation(s)
- Apar Kishor Ganti
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-7680, USA.
| | | |
Collapse
|
33
|
Affiliation(s)
- Jose Baselga
- Medical Oncology Service, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Spain.
| | | |
Collapse
|
34
|
Shaki-Loewenstein S, Zfania R, Hyland S, Wels WS, Benhar I. A universal strategy for stable intracellular antibodies. J Immunol Methods 2005; 303:19-39. [PMID: 16045924 DOI: 10.1016/j.jim.2005.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
The expression of intracellular antibodies (intrabodies) in mammalian cells has provided a powerful tool to manipulate microbial and cellular signalling pathways in a highly precise manner. However, several technical hurdles have thus far restricted their more widespread use. In particular, single-chain antibodies (scFvs) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use scFv-phage libraries as a source of intrabodies unless a preselection step was applied to identify these rare scFvs that could fold properly in the absence of disulfide bonds. Recently, we reported that scFvs can be efficiently expressed within the cytoplasm of bacteria when fused at the C-terminus of the Escherichia coli maltose-binding protein (MBP). Here, we demonstrate that such MBP-scFvs are similarly stabilized when expressed in the mammalian cell cytoplasm as well as other compartments. This was demonstrated by comparing MBP-scFv fusions to the corresponding unfused scFvs that activate a defective beta-galactosidase enzyme, others that neutralize the wild-type beta-galactosidase enzyme, and an antibody that blocks the epidermal growth factor receptor. In all cases, the MBP-scFvs significantly outperformed their unfused counterparts. Our results suggest that fusion of scFvs to MBP, and possibly to other "chaperones in the context of a fusion protein", may provide a universal approach for efficient expression of intrabodies in the mammalian cell cytoplasm. This strategy should allow investigators to bypass much of the in vitro scFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic scFv-phage libraries already in existence to identify intrabodies that will be active in vivo.
Collapse
Affiliation(s)
- Shelly Shaki-Loewenstein
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
35
|
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of the erbB receptor family. The EGFR axis is activated by a variety of ligands that are crucial in the formation and propagation of many tumors, including colorectal cancer, through their effects on cell signaling pathways, cellular proliferation, control of apoptosis, and angiogenesis. The importance of the EGFR axis in tumorigenesis and tumor progression makes it an attractive target for the development of anticancer therapies. A variety of targeting strategies to exploit the role of EGFR in tumors have been employed. The most highly developed of these anti-EGFR approaches are the monoclonal antibodies and the tyrosine kinase inhibitors (TKIs). Clinical evaluations of these compounds have yielded some promising results. The role of the EGFR axis in colorectal cancer formation and progression is reviewed and the clinical development of these anticancer EGFR-targeted drugs is reviewed and updated.
Collapse
Affiliation(s)
- A Craig Lockhart
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | |
Collapse
|
36
|
El-Rayes BF, LoRusso PM. Targeting the epidermal growth factor receptor. Br J Cancer 2004; 91:418-24. [PMID: 15238978 PMCID: PMC2409851 DOI: 10.1038/sj.bjc.6601921] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 04/14/2004] [Accepted: 04/16/2004] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the erbB family of tyrosine kinase receptors (RTK). The EGFR is involved in cell proliferation, metastasis and angiogenesis, and is expressed in a large proportion of epithelial tumours. The two main classes of EGFR inhibitors in clinical trials are the RTK inhibitors and the monoclonal antibodies. The clinical development of EGFR inhibitors has introduced new challenges to the design of phase I, II, and III trials. Both classes of agents can be safely administered at doses sufficient to inhibit the EGFR system. Receptor tyrosine kinase inhibitors have been extensively evaluated in non-small-cell lung cancer. In this setting, gefitinib has demonstrated activity in patients who fail initial chemotherapy. Monoclonal antibodies have been developed in combination with cytotoxic chemotherapy in several tumour types, most notably colorectal and head and neck cancer. The preliminary results suggest an increase in response rate and time to progression with the combination of cetuximab and chemotherapy in both disease models. Future issues in the development of EGFR inhibitors include the identification of biologic predictors of response, combination with other targeted agents, and their utilisation in earlier stage malignancies.
Collapse
Affiliation(s)
- B F El-Rayes
- Division of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, USA
| | - P M LoRusso
- Division of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, USA
| |
Collapse
|
37
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
38
|
Karpati G, Nalbantoglu J. The principles of molecular therapies for glioblastoma. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:151-63. [PMID: 12968535 DOI: 10.1016/s0074-7742(03)01006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- George Karpati
- Montreal Neurological Institute, Montreal QC H3A 2B4, Canada
| | | |
Collapse
|
39
|
Atalay G, Cardoso F, Awada A, Piccart MJ. Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR) family and its downstream effectors in breast cancer. Ann Oncol 2003; 14:1346-63. [PMID: 12954573 DOI: 10.1093/annonc/mdg365] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
From the early experience with tamoxifen to the current use of Herceptin, targeted therapy has been proven to be an important part of breast cancer (BC) treatment. In the last decade, advances in molecular biology have allowed scientists to design highly individualized, 'smart' pharmaceuticals, capable of manipulating the growth factor pathways and the genes that are involved in the development and maintenance of the malignant phenotype. The epidermal growth factor receptor (EGFR) family, as one of the best studied growth factor pathways in cancer, resembles a 'treasure island' by providing a wide range of biologically relevant targets involved in breast carcinogenesis. While a large number of new agents targeting this pathway are continuingly being tested in preclinical experiments, clinicians are witnessing the migration of some of these agents to daily practice. The aim of this review is to provide clinicians with an updated synopsis of the most advanced anti-erbB therapeutic strategies with activity against BC.
Collapse
Affiliation(s)
- G Atalay
- Jules Bordet Institute, Department of Medical Oncology, Brussels, Belgium
| | | | | | | |
Collapse
|
40
|
Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 2003; 21:2787-99. [PMID: 12860957 DOI: 10.1200/jco.2003.01.504] [Citation(s) in RCA: 916] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor of the ErbB family that is abnormally activated in many epithelial tumors. Receptor activation leads to recruitment and phosphorylation of several downstream intracellular substrates, leading to mitogenic signaling and other tumor-promoting cellular activities. In human tumors, receptor overexpression correlates with a more aggressive clinical course. Taken together, these observations indicate that the EGFR is a promising target for cancer therapy. Monoclonal antibodies directed at the ligand-binding extracellular domain and low-molecular weight inhibitors of the receptor's tyrosine kinase are currently in advanced stages of clinical development. These agents prevent ligand-induced receptor activation and downstream signaling, which results in cell cycle arrest, promotion of apoptosis, and inhibition of angiogenesis. They also enhance the antitumor effects of chemotherapy and radiation therapy. In patients, anti-EGFR agents can be given safely at doses that fully inhibit receptor signaling, and single-agent activity has been observed against a variety of tumor types, including colon carcinoma, non-small-cell lung cancer, head and neck cancer, ovarian carcinoma, and renal cell carcinoma. Although antitumor activity is significant, responses have been seen in only a minority of the patients treated. In some clinical trials, anti-EGFR agents enhanced the effects of conventional chemotherapy and radiation therapy. Ongoing research efforts are directed at the selection of patients with EGFR-dependent tumors, identification of the differences among the various classes of agents, and new clinical development strategies.
Collapse
Affiliation(s)
- John Mendelsohn
- University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030-4009, USA.
| | | |
Collapse
|
41
|
Luo X, Gong X, Tang CK. Suppression of EGFRvIII-mediated proliferation and tumorigenesis of breast cancer cells by ribozyme. Int J Cancer 2003; 104:716-21. [PMID: 12640678 DOI: 10.1002/ijc.11007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EGFRvIII is a tumor specific, ligand-independent, constitutively active variant of the epidermal growth factor receptor. Its expression has been detected in many human malignancies including breast cancer. No detectable level of EGFRvIII has, however, been observed in adult tissues, including normal breast tissues. These unique features of the EGFRvIII make it an excellent target for biologically based therapies. We have designed and generated a tumor specific ribozyme targeted to EGFRvIII. This specific EGFRvIII ribozyme is able to effectively cleave EGFRvIII mRNA under physiological conditions in a cell-free system, but does not cleave wild-type EGFR and other EGF-family receptors. While expressing this EGFRvIII-ribozyme in breast cancer cells, EGFRvIII-ribozyme is capable of downregulating endogenous EGFRvIII expression at the mRNA and protein levels. Inhibition of proliferation was observed in EGFRvIII-ribozyme transfectants. In addition, downregulation of EGFRvIII in breast cancer cells significantly inhibited tumor growth in athymic nude mice. Furthermore, this ribozyme has no effect on EGF-family receptor expression or the proliferation of breast cancer cells, which do not express EGFRvIII but express wild-type EGFR and other EGF-family receptors. These results suggest that we have generated a tumor-specific, biologically functional ribozyme and further demonstrate that EGFRvIII plays a significant role in breast cancer cell proliferation. The ultimate goal of this approach is to provide a potential treatment for breast cancer by specifically targeting this receptor.
Collapse
Affiliation(s)
- Xunyi Luo
- Lombardi Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
42
|
Abstract
Malignant glioma formation is associated with characteristic genetic alterations, although epigenetic mechanisms may contribute in tumorigenesis. Until recently, our knowledge has mainly been based on chromosomal and molecular studies performed in the last two decades. This has increased tremendously with the advent of new technologies, in particular expression arrays for simultaneous analysis of thousands of genes. Consequently, gene therapy of gliomas may aim at molecular interference with 'gain of function' genes (oncogenes) or replacement of 'loss of function' genes (tumor suppressor genes). Such approaches require transgene expression in whole tumor cell populations (if not other mechanisms come into play) which cannot be achieved with current vector systems. Hence other strategies have been pursued which may be independent of genes actually involved in tumorigenesis. Microbial genes (e.g. herpes simplex virus thymidine kinase) may be transferred into the tumors allowing for prodrug activation (e.g. ganciclovir). Furthermore, cytokines or other immunomodulatory genes may be used for vaccination purposes which frequently involves ex vivo transfection of autologous tumor cells with such genes. These approaches proved promising in preclinical studies performed in cell culture and different inbred rodent models. A considerable number of clinical trials have been initiated based on these approaches. Although most therapeutic strategies proved safe, clinical responses fell short of expectations raised by preclinical results. This, to a large extent, has to be attributed to a lag in the development of efficient vector systems. Although much effort has been put into this area of research, neuro-oncologists are still in await of a vector system allowing for selective and efficient tumor cell transduction. This has led to increased interest in distinct but related strategies, e.g. oncolytic viruses or direct intra-tumoral delivery of anti-sense oligonucleotides.
Collapse
Affiliation(s)
- W Hamel
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
43
|
Abstract
Since their initial discovery, ribozymes have shown great promise not just as a tool in the manipulation of gene expression, but also as a novel therapeutic agent. This review discusses the promises and pitfalls of ribozyme technology, with a special emphasis on cancer-related applications, though relevance to skin disease will also be discussed.
Collapse
Affiliation(s)
- Mohammed Kashani-Sabet
- Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, UCSF Cancer Center, and Department of Dermatology, University of California San Francisco, San Francisco, California 94115, USA.
| |
Collapse
|
44
|
Irie A, Kashani-Sabet M, Scanlon KJ, Uchida T, Baba S. Hammerhead ribozymes as therapeutic agents for bladder cancer. MOLECULAR UROLOGY 2002; 4:61-6. [PMID: 12006244 DOI: 10.1089/10915360050138602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hammerhead ribozymes have been investigated extensively as therapeutic agents against cancer. Aberrant or overexpression of genes related to tumorigenicity or cancer growth might be the appropriate targets for ribozyme strategies. Ribozyme-mediated gene therapy should be applied to those diseases that have no successful conventional therapy such as advanced or treatment-resistant bladder cancer. Many genetic alterations have been identified in bladder cancer related to both tumorigenesis and disease progression. Mutated H-ras, fos, and erb-B2 genes have been chosen as targets for ribozymes in previous studies, and antitumor efficacy has been demonstrated by reversion of the malignant phenotypes and by inhibition of tumor growth both in vitro and in vivo. The efficiency of various delivery systems has also been evaluated. An overview of ribozyme strategies, especially for therapeutic applications against bladder cancer, is described here.
Collapse
Affiliation(s)
- A Irie
- Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
45
|
Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 2002; 54:715-58. [PMID: 12204600 DOI: 10.1016/s0169-409x(02)00046-7] [Citation(s) in RCA: 645] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene and antisense/ribozyme therapy possesses tremendous potential for the successful treatment of genetically based diseases, such as cancer. Several cancer gene therapy strategies have already been realized in vitro, as well as in vivo. A few have even reached the stage of clinical trials, most of them phase I, while some antisense strategies have advanced to phase II and III studies. Despite this progress, a major problem in exploiting the full potential of cancer gene therapy is the lack of a safe and efficient delivery system for nucleic acids. As viral vectors possess toxicity and immunogenicity, non-viral strategies are becoming more and more attractive. They demonstrate adequate safety profiles, but their rather low transfection efficiency remains a major drawback. This review will introduce the most important cationic polymers used as non-viral vectors for gene and oligonucleotide delivery and will summarize strategies for the targeting of these agents to cancer tissues. Since the low efficiency of this group of vectors can be attributed to specific systemic and subcellular obstacles, these hurdles, as well as strategies to circumvent them, will be discussed. Local delivery approaches of vector/DNA complexes will be summarized and an overview of the principles of anticancer gene and antisense/ribozyme therapy as well as an outline of ongoing clinical trials will be presented.
Collapse
Affiliation(s)
- Thomas Merdan
- Department of Pharmaceutics and Biopharmacy, Philipps University, Ketzerbach 63, 35032 Marburg, Germany
| | | | | |
Collapse
|
46
|
Tanaka M, Kijima H, Itoh J, Matsuda T, Tanaka T. Impaired expression of a human septin family gene Bradeion inhibits the growth and tumorigenesis of colorectal cancer in vitro and in vivo. Cancer Gene Ther 2002; 9:483-8. [PMID: 12032658 DOI: 10.1038/sj.cgt.7700460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Indexed: 01/18/2023]
Abstract
We have identified a novel human septin family gene Bradeion, which is specifically expressed in human colorectal cancer and malignant melanoma. In order to analyze the implications of tumor-specific gene expression, ribozymes and its derivatives were specifically designed and transfected into various colorectal adenocarcinoma cell lines for Bradeion inactivation. We constructed ribozyme expression plasmids controlled by a human tRNA(Val) promoter, and both hammerhead ribozyme and its allosteric derivative maxizyme were used for two different forms of Bradeion mRNA. The sequence-specific cleavage of Bradeion mRNA resulted in significant growth inhibition and G2 arrest in human cancer cell lines, detected by flow cytometry analysis. In addition, in vivo mice studies demonstrated marked tumor growth suppression by the Bradeion-specific ribozymes. Thus, the tumor-specific and selective marker Bradeion also provides valuable tools as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Collaborations, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba Science City, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
47
|
Nakamura M, Abe Y, Tokunaga T. Pathological significance of vascular endothelial growth factor A isoform expression in human cancer. Pathol Int 2002; 52:331-9. [PMID: 12100515 DOI: 10.1046/j.1440-1827.2002.01367.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a highly specific factor for vascular endothelial cells. Five VEGF-A isoforms (splice variants 121, 145, 165, 189 and 206) are generated as a result of alternative splicing from a single VEGF-A gene. These differ in their molecular weights and in biological properties such as their ability to bind to cell-surface heparan sulfate proteoglycans. Deregulated VEGF-A expression contributes to the development of solid tumors by promoting tumor angiogenesis. More specifically, VEGF-A189 expression is related to angiogenesis and prognosis in certain human solid tumors. VEGF-A189 expression is also related to the xenotransplantability of human cancers into immunodeficient mice in vivo. Consequently, inhibition of VEGF-A or VEGF-A189 signaling regulates the development and metastasis of a variety of tumors. This review focuses on recent studies of the mechanisms by which VEGF-A regulates angiogenesis in the cancer stroma and on our recent findings concerning the potential mechanisms of VEGF-A189 expression on tumor growth and metastasis.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Pathology, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan.
| | | | | |
Collapse
|
48
|
Abstract
Expensive failures in the pharmaceutical industry might be avoided by target validation at an early stage. Often, the full consequences of inhibiting a chosen drug target do not emerge until late in the development process. One option is to use hammerhead ribozymes as highly specific ribonucleases targeted exclusively at the mRNA encoding the target protein. The first part of this review is concerned with the mechanism and design of hammerhead ribozymes. This includes the chemistry of their action, specificity of cleavage and ability to discriminate between different mRNAs and selection of suitable cleavage sites. In considering their use for target validation, hammerhead ribozymes are divided into two categories. Endogenous ribozymes are transcribed inside the cell where they act whilst exogenous are introduced into the cell from outside. Exogenous ribozymes are synthesised chemically and must be protected against cellular nucleases. Information is provided on transfection methods and vectors that have been used with endogenous ribozymes as well as synthesis and chemical modification of exogenous ribozymes. Of proteins inhibited in cells or whole organisms, those in animal experiments are emphasised. Comparisons are made with other approaches, especially the use of antisense oligonucleotides or RNA.
Collapse
Affiliation(s)
- John Goodchild
- Center for Discovery of Drugs and Diagnostics, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
49
|
Affiliation(s)
- L Wright
- Hematology Research Laboratory, St. Vincent's Hospital, 384 Victoria St., Darlinghurst, New South Wales, 2010 Australia
| | | |
Collapse
|
50
|
Pedersen MW, Meltorn M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 2001; 12:745-60. [PMID: 11484948 DOI: 10.1023/a:1011177318162] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the epidermal growth factor receptor occur frequently in a number of human tumours including gliomas, non-small-cell lung carcinomas, ovarian carcinomas and prostate carcinomas. The type III epidermal growth factor receptor mutation (variously named EGFRvIII, de2-7 EGFR or AEGFR), which lacks a portion of the extracellular ligand binding domain, is the most common. Here, we review the current status with regard to the role of EGFRvIII in human cancers. A detailed discussion of the formation of EGFRvIII and its structure at the protein level are likewise included along with a discussion of its more functional roles. The design and use (preclinical and clinical) of small molecule inhibitors, antibodies, and antisense oligonucleotides against wild-type EGFR are considered in detail as these strategies can be directly adapted to target EGFRvIII. Finally, the status of EGFRvIII targeted therapy is reviewed.
Collapse
Affiliation(s)
- M W Pedersen
- Department of Radiation Biology, The Finsen Centre, National University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|