1
|
Seighali N, Shafiee A, Rafiee MA, Aminzade D, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: a systematic review of preclinical and clinical studies. BMC Infect Dis 2023; 23:320. [PMID: 37170214 PMCID: PMC10173209 DOI: 10.1186/s12879-023-08289-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Numerous vaccination research experiments have been conducted on non-primate hosts to prevent or control HTLV-1 infection. Therefore, reviewing recent advancements for status assessment and strategic planning of future preventative actions to reduce HTLV-1 infection and its consequences would be essential. METHODS MEDLINE, Scopus, Web of Science, and Clinicaltrials.gov were searched from each database's inception through March 27, 2022. All original articles focusing on developing an HTLV-1 vaccine candidate were included. RESULTS A total of 47 studies were included. They used a variety of approaches to develop the HTLV-1 vaccine, including DNA-based, dendritic-cell-based, peptide/protein-based, and recombinant vaccinia virus approaches. The majority of the research that was included utilized Tax, Glycoprotein (GP), GAG, POL, REX, and HBZ as their main peptides in order to develop the vaccine. The immunization used in dendritic cell-based investigations, which were more recently published, was accomplished by an activated CD-8 T-cell response. Although there hasn't been much attention lately on this form of the vaccine, the initial attempts to develop an HTLV-1 immunization depended on recombinant vaccinia virus, and the majority of results seem positive and effective for this type of vaccine. Few studies were conducted on humans. Most of the studies were experimental studies using animal models. Adenovirus, Cytomegalovirus (CMV), vaccinia, baculovirus, hepatitis B, measles, and pox were the most commonly used vectors. CONCLUSIONS This systematic review reported recent progression in the development of HTLV-1 vaccines to identify candidates with the most promising preventive and therapeutic effects.
Collapse
Affiliation(s)
- Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ali Rafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dlnya Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Hasegawa A, Murata M, Fujikawa T, Katagiri K, Nagano Y, Masuda T, Kuramitsu M, Nakajima S, Fujisawa JI, Okuma K, Grover P, Kidiga M, Akari H, Kannagi M. Vaccination with short-term-cultured autologous PBMCs efficiently activated STLV-1-specific CTLs in naturally STLV-1-infected Japanese monkeys with impaired CTL responses. PLoS Pathog 2023; 19:e1011104. [PMID: 36730466 PMCID: PMC9928132 DOI: 10.1371/journal.ppat.1011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
A small proportion of human T-cell leukemia virus type-1 (HTLV-1)-infected individuals develop adult T-cell leukemia/lymphoma, a chemotherapy-resistant lymphoproliferative disease with a poor prognosis. HTLV-1-specific cytotoxic T lymphocytes (CTLs), potential anti-tumor/virus effectors, are impaired in adult T-cell leukemia/lymphoma patients. Here, using Japanese monkeys naturally infected with simian T-cell leukemia/T-lymphotropic virus type-1 (STLV-1) as a model, we demonstrate that short-term-cultured autologous peripheral blood mononuclear cells (PBMCs) can serve as a therapeutic vaccine to activate such CTLs. In a screening test, STLV-1-specific CTL activity was detectable in 8/10 naturally STLV-1-infected monkeys. We conducted a vaccine study in the remaining two monkeys with impaired CTL responses. The short-term-cultured PBMCs of these monkeys spontaneously expressed viral antigens, in a similar way to PBMCs from human HTLV-1 carriers. The first monkey was subcutaneously inoculated with three-day-cultured and mitomycin C (MMC)-treated autologous PBMCs, and then boosted with MMC-treated autologous STLV-1-infected cell line cells. The second monkey was inoculated with autologous PBMC-vaccine alone twice. In addition, a third monkey that originally showed a weak STLV-1-specific CTL response was inoculated with similar autologous PBMC-vaccines. In all three vaccinated monkeys, marked activation of STLV-1-specific CTLs and a mild reduction in the STLV-1 proviral load were observed. Follow-up analyses on the two monkeys vaccinated with PBMCs alone indicated that STLV-1-specific CTL responses peaked at 3-4 months after vaccination, and then diminished but remained detectable for more than one year. The significant reduction in the proviral load and the control of viral expression were associated with CTL activation but also diminished 6 and 12 months after vaccination, respectively, suggesting the requirement for a booster. The vaccine-induced CTLs in these monkeys recognized epitopes in the STLV-1 Tax and/or Envelope proteins, and efficiently killed autologous STLV-1-infected cells in vitro. These findings indicated that the autologous PBMC-based vaccine could induce functional STLV-1-specific CTLs in vivo.
Collapse
Affiliation(s)
- Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Cancer Cell Biology Laboratory, Department of Cancer Biology, Clinical Research Institute, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Megumi Murata
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Tomoka Fujikawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Poonam Grover
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Maureen Kidiga
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
3
|
Selective APC-targeting of a novel Fc-fusion multi-immunodominant recombinant protein ( tTax- tEnv:mFcγ2a) for HTLV-1 vaccine development. Life Sci 2022; 308:120920. [PMID: 36044973 DOI: 10.1016/j.lfs.2022.120920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS HTLV-1 causes two life-threatening diseases: adult T-cell leukaemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis. Due to the lack of proper treatment, an effective HTLV-1 vaccine is urgently needed. MAIN METHODS DNA sequences of 11-19 and 178-186 amino acids of HTLV-1-Tax and SP2 and P21 were fused to the mouse-Fcγ2a, or His-tag called tTax-tEnv:mFcγ2a and tTax-tEnv:His, respectively. These constructs were produced in Pichia pastoris, and their immunogenicity and protective properties were assessed in a mouse challenging model with an HTLV-1-MT2 cell line. KEY FINDINGS The immunogenicity assessments showed significant increase in IFN-γ production in animals receiving tTax-tEnv:mFcγ2a (1537.2 ± 292.83 pg/mL) compared to tTax-tEnv:His (120.28 ± 23.9, p = 0.02). IL-12 production also increased in group receiving tTax-tEnv:mFcγ2a than tTax-tEnv:His group, (23 ± 2.6 vs 1.5 ± 0.6, p = 0.01), respectively. The IFN-γ and IL-12 levels in the Fc-immunised group were negatively correlated with PVL (R = -0.82, p < 0.04) and (R = -0.87, p = 0.05), respectively. While, IL-4 was increased by tTax-tEnv:His (21.16 ± 1.76 pg/mL) compared to tTax-tEnv:mFcγ2a (13.7 ± 1.49, p = 0.019) with a negative significant correlation to PVL (R = -0.95, p = 0.001). SIGNIFICANCE The mouse challenging assay with tTax-tEnv:mFcγ2a showed 50 % complete protection and a 50 % low level of HTLV-1-PVL compared to the positive control receiving HTLV-1-MT2 (p = 0.001). Challenging experiments for the His-tag protein showed the same outcome (p = 0.002) but by different mechanisms. The Fc-fusion construct induced more robust Th1, and His-tag protein shifted more to Th2 immune responses. Therefore, inducing both T helper responses, but a Th1/Th2 balance in favour of Th1 might be necessary for appropriate protection against HTLV-1 infection, spreading via cell-to-cell contact manner.
Collapse
|
4
|
Jahantigh HR, Stufano A, Lovreglio P, Rezaee SA, Ahmadi K. In silico identification of epitope-based vaccine candidates against HTLV-1. J Biomol Struct Dyn 2021; 40:6737-6754. [PMID: 33648421 DOI: 10.1080/07391102.2021.1889669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human T cell leukemia virus type-1 (HTLV-1) is the cause of adult T cell leukemia/lymphoma (ATL), uveitis, and certain pulmonary diseases. In recent decades, many scientists have proposed the development of different treatment and prevention strategies to combat HTLV-1 infection. In this study, we used bioinformatics tools to predict peptide and protein vaccine candidates against HTLV-1 that can potentially induce antibody production and both CD4+ and CD8+ T cell immune responses. Five critical proteins, viz., Hbz, Tax, Pol, Gag, and Env, were analyzed for predicting immunogenic T and B cell epitopes and subsequently evaluated using bioinformatics tools. Based on the predictions, the most antigenic epitopes were selected, and their interaction with immune receptors was investigated. We also designed a protein vaccine candidate with an eight-epitopes-rich domain, including overlapping epitopes detected on both B and T cells. Then, the interaction of the epitope and the designed protein with immune receptors was validated in an in silico docking study. The docking analysis showed that the O2 epitope and D8 protein interact strongly with immune receptors, especially the HLA-A*02:01 receptor. The stability of the interactions was investigated by molecular dynamics (MD) for 100 ns. The root mean square deviation, radius of gyration, hydrogen bonds, and solvent-accessible surface area were calculated for the 100 ns trajectory period. MD studies demonstrated that the O2-HLA-A*02:01 and D8-HLA-A*02:01 complexes were stable during the simulation. Analysis of in silico results showed that the peptide and the designed protein could elicit humoral and cell-mediated immune responses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy.,Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Angela Stufano
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy.,Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Seyed Abdolrahim Rezaee
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Ishizawa M, Ganbaatar U, Hasegawa A, Takatsuka N, Kondo N, Yoneda T, Katagiri K, Masuda T, Utsunomiya A, Kannagi M. Short-term cultured autologous peripheral blood mononuclear cells as a potential immunogen to activate Tax-specific CTL response in adult T-cell leukemia patients. Cancer Sci 2021; 112:1161-1172. [PMID: 33410215 PMCID: PMC7935807 DOI: 10.1111/cas.14800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of CD8+ Tax‐specific CTL is a new therapeutic concept for adult T‐cell leukemia (ATL) caused by HTLV‐1. A recent clinical study of the dendritic cell vaccine pulsed with Tax peptides corresponding to CTL epitopes showed promising outcomes in ATL patients possessing limited human leukocyte antigen (HLA) alleles. In this study, we aimed to develop another immunotherapy to activate Tax‐specific CTL without HLA limitation by using patients’ own HTLV‐1‐infected cells as a vaccine. To examine the potential of HTLV‐1‐infected T‐cells to activate CTL via antigen presenting cells, we established a unique co–culture system. We demonstrated that mitomycin C‐treated HLA‐A2‐negative HTLV‐1‐infected T‐cell lines or short‐term cultured peripheral blood mononuclear cells (PBMC) derived from ATL patients induced cross–presentation of Tax antigen in co–cultured HLA‐A2‐positive antigen presenting cells, resulting in activation of HLA‐A2‐restricted CD8+ Tax‐specific CTL. This effect was not inhibited by a reverse transcriptase inhibitor. IL‐12 production and CD86 expression were also induced in antigen presenting cells co–cultured with HTLV‐1‐infected cells at various levels, which were improved by pre–treatment of the infected cells with histone deacetylase inhibitors. Furthermore, monocyte‐derived dendritic cells induced from PBMC of a chronic ATL patient produced IL‐12 and expressed enhanced levels of CD86 when co–cultured with autologous lymphocytes that had been isolated from the same PBMC and cultured for several days. These findings suggest that short‐term cultured autologous PBMC from ATL patients could potentially serve as a vaccine to evoke Tax‐specific CTL responses.
Collapse
Affiliation(s)
- Miku Ishizawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Undrakh Ganbaatar
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Takatsuka
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyo Kondo
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Yoneda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
6
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
7
|
Yoshimitsu M, Fuji S, Utsunomiya A, Nakano N, Ito A, Ito Y, Miyamoto T, Suehiro Y, Kawakita T, Moriuchi Y, Nakamae H, Kanda Y, Ichinohe T, Fukuda T, Atsuta Y, Kato K. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation for ATL with HTLV-1 Antibody-Positive Donors. Biol Blood Marrow Transplant 2019; 26:718-722. [PMID: 31821886 DOI: 10.1016/j.bbmt.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is the only available curative treatment option for patients with aggressive adult T cell leukemia-lymphoma (ATL). Donor human T cell leukemia virus (HTLV) 1 seropositivity is a critical concern when choosing relative donors, as they are not usually recommended due solely to the occurrence of donor-derived ATL. A previous report suggested that allo-HCT with an HTLV-1-seropositive donor increased ATL-related mortality. We updated the risk assessment for choosing an HTLV-1-seropositive allo-HCT donor for ATL. Our current registry data, which include larger numbers of HTLV-1-seropositive donors and longer observation periods, revealed no significant difference in overall survival (hazard ratio [HR], 0.93; 95% confidence interval [CI], 0.70-1.24; P = .61) or cumulative incidence of either ATL-related (HR, 0.96; 95% CI, 0.64 to 1.45; P = .80) or non-ATL-related mortality (HR, 0.91; 95% CI, 0.61 to 1.37; P = .66). Similarly, when considering only patients with ATL in complete remission, there was no significant difference in overall survival (HR, 1.02; 95% CI, 0.70 to 1.49; P = .91) or cumulative incidence of either ATL-related (HR, 1.20; 95% CI, 0.66 to 2.20; P=0.54) or non-ATL-related mortality (HR, 0.86; 95% CI, 0.52-1.42; P = .66). These data indicate that selecting HTLV-1-seropositive donors might not be contraindicated for patients with ATL receiving allo-HCT if alternative donors are unavailable. Further risk assessment remains to be performed.
Collapse
Affiliation(s)
- Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Center, Osaka, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Ayumu Ito
- Department of Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshikiyo Ito
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Toshihiro Miyamoto
- Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | | | - Hirohisa Nakamae
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Tochigi, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukuda
- Department of Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Koji Kato
- Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
8
|
Kannagi M, Hasegawa A, Nagano Y, Kimpara S, Suehiro Y. Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology 2019; 16:23. [PMID: 31438973 PMCID: PMC6704564 DOI: 10.1186/s12977-019-0484-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other inflammatory diseases. There is no disease-specific difference in viral strains, and it is unclear how HTLV-1 causes such different diseases manifesting as lymphoproliferation or inflammation. Although some progress has been made in therapies for these diseases, the prognosis for ATL is still dismal and HAM/TSP remains an intractable disease. So far, two regulatory proteins of HTLV-1, Tax and HBZ, have been well studied and shown to have pleiotropic functions implicated in viral pathogenesis. Tax in particular can strongly activate NFκB, which is constitutively activated in HTLV-1-infected cells and considered to contribute to both oncogenesis and inflammation. However, the expression level of Tax is very low in vivo, leading to confusion in understanding its role in viral pathogenesis. A series of studies using IL-2-dependent HTLV-1-infected cells indicated that IL-10, an anti-inflammatory/immune suppressive cytokine, could induce a proliferative phenotype in HTLV-1-infected cells. In addition, type I interferon (IFN) suppresses HTLV-1 expression in a reversible manner. These findings suggest involvement of host innate immunity in the switch between lymphoproliferative and inflammatory diseases as well as the regulation of HTLV-1 expression. Innate immune responses also affect another important host determinant, Tax-specific cytotoxic T lymphocytes (CTLs), which are impaired in ATL patients, while activated in HAM/TSP patients. Activation of Tax-specific CTLs in ATL patients after hematopoietic stem cell transplantation indicates Tax expression and its fluctuation in vivo. A recently developed anti-ATL therapeutic vaccine, consisting of Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients and exhibited favorable clinical outcomes, unless Tax-defective ATL clones emerged. These findings support the significance of Tax in HTLV-1 pathogenesis, at least in part, and encourage Tax-targeted immunotherapy in ATL. Host innate and acquired immune responses induce host microenvironments that modify HTLV-1-encoded pathogenesis and establish a complicated network for development of diseases in HTLV-1 infection. Both host and viral factors should be taken into consideration in development of therapeutic and prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuichi Kimpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
9
|
Kannagi M, Hasegawa A, Nagano Y, Iino T, Okamura J, Suehiro Y. Maintenance of long remission in adult T-cell leukemia by Tax-targeted vaccine: A hope for disease-preventive therapy. Cancer Sci 2019; 110:849-857. [PMID: 30666755 PMCID: PMC6398881 DOI: 10.1111/cas.13948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative disease caused by human T-cell leukemia virus type 1 (HTLV-1). Multi-agent chemotherapy can reduce ATL cells but frequently allows relapses within a short period of time. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is now a standard therapy for ATL in Japan as it can achieve long-term remission in approximately one-third of recipient ATL patients; however, it also has a risk of treatment-related mortality. Allo-HSCT often induces HTLV-1 Tax-specific cytotoxic T cells (CTL) as well as graft-versus-host (GVH) response in ATL patients. This observation led to development of a new therapeutic vaccine to activate Tax-specific CTL, anticipating anti-ATL effects without GVH response. The newly developed Tax-DC vaccine consists of autologous dendritic cells pulsed with Tax peptides corresponding to CTL epitopes that have been identified in post-allo-HSCT ATL patients. In a pilot study of Tax-DC therapy in three ATL patients after various initial therapies, two patients survived for more than 4 years after vaccination without severe adverse effects (UMIN000011423). The Tax-DC vaccine is currently under phase I trial, showing a promising clinical outcome so far. These findings indicate the importance of patients' own HTLV-1-specific T-cell responses in maintaining remission and provide a new approach to anti-ATL immunotherapy targeting Tax. Although Tax-targeted vaccination is ineffective against Tax-negative ATL cells, it can be a safe alternative maintenance therapy for Tax-positive ATL and may be further applicable for treatment of indolent ATL or even prophylaxis of ATL development among HTLV-1-carriers.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medicine Innovation, Kyushu University, Fukuoka, Japan
| | - Jun Okamura
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
10
|
Abstract
Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Stefan Niewiesk, DVM, PhD, is a professor in the Department of Veterinary Biosciences in the College of Veterinary Medicine at the Ohio State University in Columbus, Ohio
| |
Collapse
|
11
|
Ando S, Hasegawa A, Murakami Y, Zeng N, Takatsuka N, Maeda Y, Masuda T, Suehiro Y, Kannagi M. HTLV-1 Tax-Specific CTL Epitope–Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax. THE JOURNAL OF IMMUNOLOGY 2016; 198:1210-1219. [DOI: 10.4049/jimmunol.1601557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
|
12
|
Suehiro Y, Hasegawa A, Iino T, Sasada A, Watanabe N, Matsuoka M, Takamori A, Tanosaki R, Utsunomiya A, Choi I, Fukuda T, Miura O, Takaishi S, Teshima T, Akashi K, Kannagi M, Uike N, Okamura J. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br J Haematol 2015; 169:356-67. [PMID: 25612920 DOI: 10.1111/bjh.13302] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/17/2014] [Indexed: 11/28/2022]
Abstract
Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL.
Collapse
Affiliation(s)
- Youko Suehiro
- Department of Haematology, National Kyushu Cancer Centre, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sagar D, Masih S, Schell T, Jacobson S, Comber JD, Philip R, Wigdahl B, Jain P, Khan ZK. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine. Vaccine 2014; 32:3274-84. [PMID: 24739247 DOI: 10.1016/j.vaccine.2014.03.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.
Collapse
Affiliation(s)
- Divya Sagar
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shet Masih
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Todd Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Combined cytolytic effects of a vaccinia virus encoding a single chain trimer of MHC-I with a Tax-epitope and Tax-specific CTLs on HTLV-I-infected cells in a rat model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902478. [PMID: 24791004 PMCID: PMC3985193 DOI: 10.1155/2014/902478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/20/2014] [Indexed: 02/01/2023]
Abstract
Adult T cell leukemia (ATL) is a malignant lymphoproliferative disease caused by human T cell leukemia virus type I (HTLV-I). To develop an effective therapy against the disease, we have examined the oncolytic ability of an attenuated vaccinia virus (VV), LC16m8Δ (m8Δ), and an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) line, 4O1/C8, against an HTLV-I-infected rat T cell line, FPM1. Our results demonstrated that m8Δ was able to replicate in and lyse tumorigenic FPM1 cells but was incompetent to injure 4O1/C8 cells, suggesting the preferential cytolytic activity toward tumor cells. To further enhance the cytolysis of HTLV-I-infected cells, we modified m8Δ and obtained m8Δ/RT1AlSCTax180L, which can express a single chain trimer (SCT) of rat major histocompatibility complex class I with a Tax-epitope. Combined treatment with m8Δ/RT1AlSCTax180L and 4O1/C8 increased the cytolysis of FPM1V.EFGFP/8R cells, a CTL-resistant subclone of FPM1, compared with that using 4O1/C8 and m8Δ presenting an unrelated peptide, suggesting that the activation of 4O1/C8 by m8Δ/RT1AlSCTax180L further enhanced the killing of the tumorigenic HTLV-I-infected cells. Our results indicate that combined therapy of oncolytic VVs with SCTs and HTLV-I-specific CTLs may be effective for eradication of HTLV-I-infected cells, which evade from CTL lysis and potentially develop ATL.
Collapse
|
15
|
Kannagi M, Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Masuda M. Adult T-cell leukemia: future prophylaxis and immunotherapy. Expert Rev Anticancer Ther 2014; 4:369-76. [PMID: 15161436 DOI: 10.1586/14737140.4.3.369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A small population of human T-cell leukemia virus Type I (HTLV-I) carriers develop adult T-cell leukemia after a long incubation period. The results of a series of experiments using animal models suggest that insufficiency of HTLV-I-specific T-cell response induced by vertical HTLV-I infection allows enlargement of the HTLV-I-infected cell reservoir in vivo, a crucial risk factor of adult T-cell leukemia. In this review it is proposed that prophylactic Tax-targeted vaccines for the high-risk group of adult T-cell leukemia, which is characterized by low HTLV-I-specific T-cell response and high proviral load, can reduce the risk. Immunological studies on adult T-cell leukemia patients after hematopoietic stem cell transplantation also suggest that Tax-targeted immunotherapy may be effective against full-blown disease, although its indication may be limited.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, okyo Medical and Dental University, Medical Research Division, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Jacob J Al-Saleem
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA. ; Comprenhensive Cancer Center and Solove Research Institute, OH, USA. ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
17
|
Tysome JR, Li X, Wang S, Wang P, Gao D, Du P, Chen D, Gangeswaran R, Chard LS, Yuan M, Alusi G, Lemoine NR, Wang Y. A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity. Clin Cancer Res 2012; 18:6679-89. [PMID: 23091113 DOI: 10.1158/1078-0432.ccr-12-0979] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The efficacy of oncolytic viruses depends on multiple actions including direct tumor lysis, modulation of tumor perfusion, and stimulation of tumor-directed immune responses. In this study, we investigated whether a sequential combination of immunologically distinct viruses might enhance antitumor efficacy through the induction of tumor-specific immunity and circumvention or mitigation of antiviral immune responses. EXPERIMENTAL DESIGN The Syrian hamster as an immune-competent model that supports replication of both adenovirus and vaccinia virus was evaluated in vitro and in vivo. The antitumor efficacy of either virus alone or sequential combination of the two viruses was examined in pancreatic and kidney cancer models. The functional mechanism of the regimen developed here was investigated by histopathology, immunohistochemistry staining, CTL assay, and T-cell depletion. RESULTS The Syrian hamster is a suitable model for assessment of oncolytic adenovirus and vaccinia virus. Three low doses of adenovirus followed by three low doses of vaccinia virus resulted in a superior antitumor efficacy to the reverse combination, or six doses of either virus alone, against pancreatic and kidney tumors in Syrian hamsters. A total of 62.5% of animals bearing either tumor type treated with the sequential combination became tumor-free, accompanied by the induction of effective tumor-specific immunity. This enhanced efficacy was ablated by CD3+ T-cell depletion but was not associated with humoral immunity against the viruses. CONCLUSION These findings show that sequential treatment of tumors with oncolytic adenovirus and vaccinia virus is a promising approach for cancer therapy and that T-cell responses play a critical role.
Collapse
Affiliation(s)
- James R Tysome
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kannagi M, Hasegawa A, Takamori A, Kinpara S, Utsunomiya A. The roles of acquired and innate immunity in human T-cell leukemia virus type 1-mediated diseases. Front Microbiol 2012; 3:323. [PMID: 22969761 PMCID: PMC3432515 DOI: 10.3389/fmicb.2012.00323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis in small subsets of HTLV-1 carriers. HTLV-1-specific T-cell responses play critical roles in anti-viral and anti-tumor host defense during HTLV-1 infections. Some HTLV-1 carriers exhibit selective loss or anergy of HTLV-1-specific T-cells at an asymptomatic stage. This is also observed in ATL patients and may therefore be an underlying risk factor of ATL in combination with elevated proviral loads. HTLV-1-specific T-cells often recognize the viral oncoprotein Tax, indicating expression of Tax protein in vivo, although levels of HTLV-1 gene expression are known to be very low. A type-I interferon (IFN) response can be induced by HTLV-1-infected cells and suppresses HTLV-1 expression in vitro, suggesting a role of type-I IFN response in viral suppression and pathogenesis in vivo. Both acquired and innate immune responses control the status of HTLV-1-infected cells and could be the important determinants in the development of HTLV-1-mediated malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Is There a Role for HTLV-1-Specific CTL in Adult T-Cell Leukemia/Lymphoma? LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:391953. [PMID: 23259066 PMCID: PMC3504207 DOI: 10.1155/2012/391953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
ATLL is an aggressive malignancy of T cells that affects about 5% of individuals infected with HTLV-1. The precise mechanism of oncogenesis is not known, but there is evidence that two regulatory viral proteins, Tax and HBZ, are involved. A high set point proviral load is associated with development of ATLL or a chronic inflammatory condition, HAM/TSP. Several lines of evidence, including HLA class 1 association studies and in vitro killing assays, indicate that cytotoxic T lymphocytes are instrumental in determining this proviral load set point. Prior studies have focused chiefly on the CTL response to the immunodominant Tax protein: efficient lysis of Tax-expressing cells inversely correlates with proviral load in nonmalignant infection. However, a recent study showed that strong binding of peptides from HBZ, but not Tax, to HLA class 1 molecules was associated with a low proviral load and a reduced risk of developing HAM/TSP, indicating an important role for HBZ-specific CTL in determining infection outcome. In comparison with nonmalignant infection, HTLV-1-specific CTLs in ATLL patients are reduced in frequency and functionally deficient. Here we discuss the nature of protective CTL responses in nonmalignant HTLV-1 infection and explore the potential of CTLs to protect against ATLL.
Collapse
|
20
|
Rodríguez SM, Florins A, Gillet N, de Brogniez A, Sánchez-Alcaraz MT, Boxus M, Boulanger F, Gutiérrez G, Trono K, Alvarez I, Vagnoni L, Willems L. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 2011; 3:1210-48. [PMID: 21994777 PMCID: PMC3185795 DOI: 10.3390/v3071210] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads.
Collapse
Affiliation(s)
- Sabrina M. Rodríguez
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Arnaud Florins
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Nicolas Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Alix de Brogniez
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - María Teresa Sánchez-Alcaraz
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Mathieu Boxus
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Fanny Boulanger
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Gerónimo Gutiérrez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Karina Trono
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Irene Alvarez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Lucas Vagnoni
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| |
Collapse
|
21
|
Kannagi M, Hasegawa A, Kinpara S, Shimizu Y, Takamori A, Utsunomiya A. Double control systems for human T-cell leukemia virus type 1 by innate and acquired immunity. Cancer Sci 2011; 102:670-6. [DOI: 10.1111/j.1349-7006.2011.01862.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R. Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 2010; 29:371-402. [PMID: 20635880 DOI: 10.3109/08830185.2010.489658] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our knowledge on the physiological role of CD4(+) T lymphocytes has improved in the last decade: available data convincingly demonstrate that, besides the 'helper' activity, CD4(+) T cells may be also endowed with lytic properties. The cytotoxic function of these effector cells has a relevant role in the control of pathogenic infections and in mediating antitumor immune responses. On these bases, several immunotherapeutic approaches exploiting the cytotoxic properties of CD4(+) T cells are under investigation. This review summarizes available data supporting the functional and therapeutic relevance of cytotoxic CD4(+) T cells, with a particular focus on Epstein-Barr virus (EBV)-related disorders.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
| | | | | | | | | | | |
Collapse
|
23
|
Cyclosporine-induced immune suppression alters establishment of HTLV-1 infection in a rabbit model. Blood 2009; 115:815-23. [PMID: 19965683 DOI: 10.1182/blood-2009-07-230912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia and several lymphocyte-mediated inflammatory diseases. Persistent HTLV-1 infection is determined by a balance between host immune responses and virus spread. Immunomodulatory therapy involving HTLV-1-infected patients occurs in a variety of clinical settings. Knowledge of how these treatments influence host-virus relationships is not understood. In this study, we examined the effects of cyclosporine A (CsA)-induced immune suppression during early infection of HTLV-1. Twenty-four New Zealand white rabbits were split into 4 groups. Three groups were treated with either 10 or 20 mg/kg CsA or saline before infection. The fourth group was treated with 20 mg/kg CsA 1 week after infection. Immune suppression, plasma CsA concentration, ex vivo lymphocyte HTLV-1 p19 production, anti-HTLV-1 serologic responses, and proviral load levels were measured during infection. Our data indicated that CsA treatment before HTLV-1 infection enhanced early viral expression compared with untreated HTLV-1-infected rabbits, and altered long-term viral expression parameters. However, CsA treatment 1 week after infection diminished HTLV-1 expression throughout the 10-week study course. Collectively, these data indicate immunologic control is a key determinant of early HTLV-1 spread and have important implications for therapeutic intervention during HTLV-1-associated diseases.
Collapse
|
24
|
Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009; 86:1205-16. [PMID: 19656902 DOI: 10.1189/jlb.0309172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.
Collapse
Affiliation(s)
- Sharrón L Manuel
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
25
|
Takatsuka N, Hasegawa A, Takamori A, Shimizu Y, Kato H, Ohashi T, Amagasa T, Masuda T, Kannagi M. Induction of IL-10- and IFN- -producing T-cell responses by autoreactive T-cells expressing human T-cell leukemia virus type I Tax. Int Immunol 2009; 21:1089-100. [DOI: 10.1093/intimm/dxp074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Shimizu Y, Takamori A, Utsunomiya A, Kurimura M, Yamano Y, Hishizawa M, Hasegawa A, Kondo F, Kurihara K, Harashima N, Watanabe T, Okamura J, Masuda T, Kannagi M. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci 2009; 100:481-9. [PMID: 19154412 PMCID: PMC11158518 DOI: 10.1111/j.1349-7006.2008.01054.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1)-specific T-cell immunity, a potential antitumor surveillance system in vivo, is impaired in adult T-cell leukemia (ATL). In this study, we aimed to clarify whether the T-cell insufficiency in ATL is present before the disease onset or occurs as a consequence of the disease. We investigated T-cell responses against Tax protein in peripheral blood mononuclear cells (PBMCs) from individuals at earlier stages of HTLV-1-infection, including 21 asymptomatic HTLV-1 carriers (ACs) and four patients with smoldering-type ATL (sATL), whose peripheral lymphocyte count was in normal range. About 30% of samples tested showed clear Tax-specific interferon (IFN)-gamma producing responses. Proviral loads in this group were significantly lower than those in the other less-specific response group. The latter group was further divided to two subgroups with or without emergence of Tax-specific responses following depletion of CC chemokine receptor 4 (CCR4)(+) cells that contained HTLV-1-infected cells. In the PBMCs with Tax-specific responses, CD8(+) cells efficiently suppressed HTLV-1 p19 production in culture. The remaining group without the emergence of Tax-specific response after CCR4(+) cell-depletion included at least two sATL and one AC samples, which spontaneously produced HTLV-1 p19 in culture, where tetramer-binding, Tax-specific cytotoxic T-lymphocytes were either undetectable or unresponsive. Our results indicated that HTLV-1-specific T-cell responsiveness widely differed among HTLV-1 carriers, and that impairment of HTLV-1-specific T-cell responses was observed not only in advanced ATL patients but also in a subpopulation at earlier stages, which was associated with insufficient control of HTLV-1.
Collapse
Affiliation(s)
- Yukiko Shimizu
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ohashi T, Nagai M, Okada H, Takayanagi R, Shida H. Activation and detection of HTLV-I Tax-specific CTLs by epitope expressing single-chain trimers of MHC class I in a rat model. Retrovirology 2008; 5:90. [PMID: 18840303 PMCID: PMC2579301 DOI: 10.1186/1742-4690-5-90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/08/2008] [Indexed: 11/24/2022] Open
Abstract
Background Human T cell leukemia virus type I (HTLV-I) causes adult T-cell leukemia (ATL) in infected individuals after a long incubation period. Immunological studies have suggested that insufficient host T cell response to HTLV-I is a potential risk factor for ATL. To understand the relationship between host T cell response and HTLV-I pathogenesis in a rat model system, we have developed an activation and detection system of HTLV-I Tax-specific cytotoxic T lymphocytes (CTLs) by Epitope expressing Single-Chain Trimers (SCTs) of MHC Class I. Results We have established expression vectors which encode SCTs of rat MHC-I (RT1.Al) with Tax180-188 peptide. Human cell lines transfected with the established expression vectors were able to induce IFN-γ and TNF-α production by a Tax180-188-specific CTL line, 4O1/C8. We have further fused the C-terminus of SCTs to EGFP and established cells expressing SCT-EGFP fusion protein on the surface. By co-cultivating the cells with 4O1/C8, we have confirmed that the epitope-specific CTLs acquired SCT-EGFP fusion proteins and that these EGFP-possessed CTLs were detectable by flow cytometric analysis. Conclusion We have generated a SCT of rat MHC-I linked to Tax epitope peptide, which can be applicable for the induction of Tax-specific CTLs in rat model systems of HTLV-I infection. We have also established a detection system of Tax-specific CTLs by using cells expressing SCTs fused with EGFP. These systems will be useful tools in understanding the role of HTLV-I specific CTLs in HTLV-I pathogenesis.
Collapse
Affiliation(s)
- Takashi Ohashi
- Division of Molecular Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
28
|
Kannagi M. Immunologic control of human T-cell leukemia virus type I and adult T-cell leukemia. Int J Hematol 2007; 86:113-7. [PMID: 17875523 DOI: 10.1532/ijh97.07092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Host T-cell responses to human T-cell leukemia virus type I (HTLV-I) control the expansion of HTLV-I-infected cells and are determinants of the equilibrium proviral load in vivo. Insufficient T-cell responses are regarded as an immunologic risk factor for adult T-cell leukemia (ATL) because they allow increased proviral loads, which represent an epidemiologic risk factor for ATL. ATL cells from approximately half of ATL cases retain the ability to express HTLV-I Tax, a major target antigen of HTLV-I-specific cytotoxic T-lymphocytes (CTL), whereas Tax-specific CTL in ATL patients are inactive. Tax-specific CTL responses are strongly activated after hematopoietic stem cell transplantation in some ATL patients in long-term remission, indicating that HTLV-I Tax is expressed in vivo rather than being silent, and that the donor-derived T-cell system can recognize it. These findings strongly suggest that reactivation of Tax-specific CTL by vaccines may be promising for prophylaxis of ATL in the high-risk group of HTLV-I carriers and for therapy of ATL in patients whose tumor cells are capable of expressing Tax.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Medical Research Division, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
29
|
Asquith B, Bangham CRM. How does HTLV-I persist despite a strong cell-mediated immune response? Trends Immunol 2007; 29:4-11. [PMID: 18042431 DOI: 10.1016/j.it.2007.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 11/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a pathogenic retrovirus that infects human CD4(+) T lymphocytes. Despite its presence in T cells, HTLV-1 causes little overt immunosuppression. This host-virus relationship has therefore been exploited as an excellent model system for studying the dynamic interaction between a persistent retrovirus and the normal human immune system. We use a combination of mathematical and experimental techniques to identify key factors on both sides of the in vivo host-virus interaction that significantly determine HTLV-I proviral load and disease risk. We develop a model to describe how these factors interact to enable viral persistence.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, W2 1PG, UK.
| | | |
Collapse
|
30
|
Takayanagi R, Ohashi T, Yamashita E, Kurosaki Y, Tanaka K, Hakata Y, Komoda Y, Ikeda S, Tsunetsugu-Yokota Y, Tanaka Y, Shida H. Enhanced replication of human T-cell leukemia virus type 1 in T cells from transgenic rats expressing human CRM1 that is regulated in a natural manner. J Virol 2007; 81:5908-18. [PMID: 17360758 PMCID: PMC1900248 DOI: 10.1128/jvi.02811-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/05/2007] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). To develop a better animal model for the investigation of HTLV-1 infection, we established a transgenic (Tg) rat carrying the human CRM1 (hCRM1) gene, which encodes a viral RNA transporter that is a species-specific restriction factor. At first we found that CRM1 expression is elaborately regulated through a pathway involving protein kinase C during lymphocyte activation, initially by posttranscriptional and subsequently by transcriptional mechanisms. This fact led us to use an hCRM1-containing bacterial artificial chromosome clone, which would harbor the entire regulatory and coding regions of the CRM1 gene. The Tg rats expressed hCRM1 protein in a manner similar to expression of intrinsic rat CRM1 in various organs. HTLV-1-infected T-cell lines derived from these Tg rats produced 100- to 10,000-fold more HTLV-1 than did T cells from wild-type rats, and the absolute levels of HTLV-1 were similar to those produced by human T cells. We also observed enhancement of the dissemination of HTLV-1 to the thymus in the Tg rats after intraperitoneal inoculation, although the proviral loads were low in both wild-type and Tg rats. These results support the essential role of hCRM1 in proper HTLV-1 replication and suggest the importance of this Tg rat as an animal model for HTLV-1.
Collapse
Affiliation(s)
- Ryo Takayanagi
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi H, Ngato T, Sato K, Aoki N, Kimura S, Tanaka Y, Aizawa H, Tateno M, Celis E. In vitro peptide immunization of target tax protein human T-cell leukemia virus type 1-specific CD4+ helper T lymphocytes. Clin Cancer Res 2006; 12:3814-22. [PMID: 16778109 PMCID: PMC1986724 DOI: 10.1158/1078-0432.ccr-06-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adult T-cell leukemia/lymphoma induced by human T-cell leukemia virus type 1 (HTLV-1) is usually a fatal lymphoproliferative malignant disease. HTLV-1 Tax protein plays a critical role in HTLV-1-associated leukemogenesis and is an attractive target for vaccine development. Although HTLV-1 Tax is the most dominant antigen for HTLV-1-specific CD8(+) CTLs in HTLV-1-infected individuals, few epitopes recognized by CD4(+) helper T lymphocytes in HTLV-1 Tax protein have been described. The aim of the present study was to study T-helper-cell responses to HTLV-1 Tax and to identify naturally processed MHC class II-restricted epitopes that could be used for vaccine development. EXPERIMENTAL DESIGN An MHC class II binding peptide algorithm was used to predict potential T-helper cell epitope peptides from HTLV-1 Tax. We assessed the ability of the corresponding peptides to elicit helper T-cell responses by in vitro vaccination of purified CD4(+) T lymphocytes. RESULTS Peptides Tax(191-205) and Tax(305-319) were effective in inducing T-helper-cell responses. Although Tax(191-205) was restricted by the HLA-DR1 and DR9 alleles, responses to Tax(305-319) were restricted by either DR15 or DQ9. Both these epitopes were found to be naturally processed by HTLV-1(+) T-cell lymphoma cells and by autologous antigen-presenting cells that were pulsed with HTLV-1 Tax(+) tumor lysates. Notably, the two newly identified helper T-cell epitopes are found to lie proximal to known CTL epitopes, which will facilitate the development of prophylactic peptide-based vaccine capable of inducing simultaneous CTL and T-helper responses. CONCLUSION Our data suggest that HTLV-1 Tax protein could serve as tumor-associated antigen for CD4(+) helper T cells and that the present epitopes might be used for T-cell-based immunotherapy against tumors expressing HTLV-1.
Collapse
Affiliation(s)
- Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McGirr KM, Buehuring GC. Tax & rex: overlapping genes of the Deltaretrovirus group. Virus Genes 2006; 32:229-39. [PMID: 16732475 DOI: 10.1007/s11262-005-6907-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/22/2005] [Indexed: 10/24/2022]
Abstract
Bovine leukemia virus and human T-cell leukemia viruses I and II, members of the Deltaretrovirus group, have two regulatory genes, tax and rex, that are coded in overlapping reading frames. We found that sequence variations in the rex gene of each virus result in amino acid differences significantly more often than variations in the tax gene. For all three viruses the highest ratio of non-synonymous to synonymous changes was found in the rex gene. In the overlapping regions of tax and rex, the second codon position of Rex corresponds to the third codon position of Tax. Nucleotide C was present in all genes of the three viruses at the highest frequency and this bias was most pronounced in the rex gene. More specifically we found that the C bias and nucleotide variation is greatest at the second codon position of Rex and the third codon position of Tax in the area of tax/rex overlap. Changes in the second codon position of Rex always resulted in amino acid change whereas changes in the third codon position of Tax resulted in amino acid changes less than a third of the time. Analysis of the amino acid frequencies in both proteins shows that there is a disproportionately large percentage of the amino acids alanine, proline, serine and threonine (the four amino acids whose second codon position is C) in Rex. These findings led us to hypothesize that the Rex protein can withstand more amino acid changes than can the Tax protein suggesting that the Tax protein experiences higher evolutionary constraints and is the more conserved of the two proteins.
Collapse
Affiliation(s)
- Kathleen Margaret McGirr
- School of Public Health, Division of Infectious Diseases, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
33
|
Komori K, Hasegawa A, Kurihara K, Honda T, Yokozeki H, Masuda T, Kannagi M. Reduction of human T-cell leukemia virus type 1 (HTLV-1) proviral loads in rats orally infected with HTLV-1 by reimmunization with HTLV-1-infected cells. J Virol 2006; 80:7375-81. [PMID: 16840318 PMCID: PMC1563733 DOI: 10.1128/jvi.00230-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) persistently infects humans, and the proviral loads that persist in vivo vary widely among individuals. Elevation in the proviral load is associated with serious HTLV-1-mediated diseases, such as adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, it remains controversial whether HTLV-1-specific T-cell immunity can control HTLV-1 in vivo. We previously reported that orally HTLV-1-infected rats showed insufficient HTLV-1-specific T-cell immunity that coincided with elevated levels of the HTLV-1 proviral load. In the present study, we found that individual HTLV-1 proviral loads established in low-responding hosts could be reduced by the restoration of HTLV-1-specific T-cell responses. Despite the T-cell unresponsiveness for HTLV-1 in orally infected rats, an allogeneic mixed lymphocyte reaction in the splenocytes and a contact hypersensitivity response in the skin of these rats were comparable with those of naive rats. HTLV-1-specific T-cell response in orally HTLV-1-infected rats could be restored by subcutaneous reimmunization with mitomycin C (MMC)-treated syngeneic HTLV-1-transformed cells. The reimmunized rats exhibited lower proviral loads than untreated orally infected rats. We also confirmed that the proviral loads in orally infected rats decreased after reimmunization in the same hosts. Similar T-cell immune conversion could be reproduced in orally HTLV-1-infected rats by subcutaneous inoculation with MMC-treated primary T cells from syngeneic orally HTLV-1-infected rats. The present results indicate that, although HTLV-1-specific T-cell unresponsiveness is an underlying risk factor for the propagation of HTLV-1-infected cells in vivo, the risk may potentially be reduced by reimmunization, for which autologous HTLV-1-infected cells are a candidate immunogen.
Collapse
Affiliation(s)
- Kazuya Komori
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Kiyoshi Kurihara
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Takayuki Honda
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Hiroo Yokozeki
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Takao Masuda
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
| | - Mari Kannagi
- Department of Immunotherapeutics, Department of Dermatology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan, Division of Immunology, Tulane National Primate Research Center, Tulane, Louisiana 70433
- Corresponding author. Mailing address: Department of Immunotherapeutics, Faculty of Medicine, Tokyo Medical and Dental University, Medical Research Division, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Phone: 81-3-5803-5798. Fax: 81-3-5803-0235. E-mail:
| |
Collapse
|
34
|
Kurihara K, Shimizu Y, Takamori A, Harashima N, Noji M, Masuda T, Utsunomiya A, Okamura J, Kannagi M. Human T-cell leukemia virus type-I (HTLV-I)-specific T-cell responses detected using three-divided glutathione-S-transferase (GST)-Tax fusion proteins. J Immunol Methods 2006; 313:61-73. [PMID: 16723135 DOI: 10.1016/j.jim.2006.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 11/30/2022]
Abstract
Insufficient T-cell response to human T-cell leukemia virus type-I (HTLV-I) is a potential risk factor in adult T-cell leukemia (ATL). We established an assay system for detecting HTLV-I-specific T-cell response by using recombinant glutathione-S-transferase (GST) proteins fused with HTLV-I Tax protein that was divided into three portions, Tax-A, -B, and -C, corresponding to the N-terminal, central and C-terminal regions, respectively. When splenocytes from rats immunized with plasmids encoding Tax cDNA were incubated with these recombinant proteins, strong interferon gamma (IFN-gamma-producing responses occurred against GST-Tax proteins but not against control GST proteins. No such Tax-specific responses were observed in splenocytes from naive rats. Cocktails of oligopeptides corresponding to the Tax-A, -B, and -C regions also induced IFN-gamma-producing responses when incubated with splenocytes from immunized rats, but required higher amounts of antigens and there were a shorter periods of sustained T-cell responses than with GST-Tax protein-based assay. Although splenocytes from immunized rats predominantly reacted against GST-Tax-B protein, they failed to react with peptide cocktails corresponding to the Tax-B region, likely because the major epitope was interrupted in the initially prepared series of peptides. Using a newly prepared peptide series we found that splenocytes predominantly reacted with a peptide located in the Tax-B region that overlaps with a previously identified cytotoxic T lymphocytes (CTL) epitope of this rat strain. Using this system, we examined peripheral blood mononuclear cells (PBMC) from an ATL patient who underwent complete remission following hematopoietic stem cell transplantation (HSCT). PBMC from this patient produced a significant Tax-specific T-cell response predominantly against GST-Tax-A protein. This is consistent with the previous finding that this patient exhibited a strong HLA-A2-restricted CTL response to Tax 11-19 epitope, which is located in the Tax-A region. This study provides a diagnostic tool, useful for monitoring HTLV-I-specific T-cell immunity in patients and for surveying HTLV-I-carriers to identify an immunological group at high risk for ATL development, regardless of their human leukocyte antigen (HLA) types. It is also useful for predicting the location of T-cell epitopes, which may be applicable in future vaccine strategies.
Collapse
Affiliation(s)
- Kiyoshi Kurihara
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Medical Research Division, 1-5-45 Yushima, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Debacq C, Héraud JM, Asquith B, Bangham C, Merien F, Moules V, Mortreux F, Wattel E, Burny A, Kettmann R, Kazanji M, Willems L. Reduced cell turnover in lymphocytic monkeys infected by human T-lymphotropic virus type 1. Oncogene 2005; 24:7514-23. [PMID: 16091751 DOI: 10.1038/sj.onc.1208896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding cell dynamics in animal models have implications for therapeutic strategies elaborated against leukemia in human. Quantification of the cell turnover in closely related primate systems is particularly important for rare and aggressive forms of human cancers, such as adult T-cell leukemia. For this purpose, we have measured the death and proliferation rates of the CD4+ T lymphocyte population in squirrel monkeys (Saimiri sciureus) infected by human T-lymphotropic virus type 1 (HTLV-1). The kinetics of in vivo bromodeoxyuridine labeling revealed no modulation of the cell turnover in HTLV-1-infected monkeys with normal CD4 cell counts. In contrast, a substantial decrease in the proliferation rate of the CD4+ T population was observed in lymphocytic monkeys (e.g. characterized by excessive proportions of CD4+ T lymphocytes and by the presence of abnormal flower-like cells). Unexpectedly, onset of HTLV-associated leukemia thus occurs in the absence of increased CD4+ T-cell proliferation. This dynamics significantly differs from the generalized activation of the T-cell turnover induced by other primate lymphotropic viruses like HIV and SIV.
Collapse
Affiliation(s)
- Christophe Debacq
- 1Molecular and Cellular Biology, Center of Basic Biology (FUSAG), 13 avenue Maréchal Juin, B5030, Gembloux, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sundaram R, Lynch MP, Rawale S, Dakappagari N, Young D, Walker CM, Lemonnier F, Jacobson S, Kaumaya PTP. Protective efficacy of multiepitope human leukocyte antigen-A*0201 restricted cytotoxic T-lymphocyte peptide construct against challenge with human T-cell lymphotropic virus type 1 Tax recombinant vaccinia virus. J Acquir Immune Defic Syndr 2005; 37:1329-39. [PMID: 15483462 DOI: 10.1097/00126334-200411010-00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Multiepitope T-cell vaccines are more likely to generate a broad long-lasting immune response than those composed of single epitopes. We recently reported a novel multivalent cytotoxic T-lymphocyte peptide construct derived from the Tax protein of HTLV-1 separated by arginine spacers that elicited high cellular responses against individual epitopes simultaneously in human leukocyte antigen (HLA)-A*0201 transgenic mice. We now report the effect of epitope orientation on the processing of the multiepitope construct by 20s proteasomes and the effect of the processing rates on the immunogenicity of the intended epitopes. A positive correlation was found between processing rates and the immunogenicity of the intended epitopes. The construct with the highest immunogenicity for each epitope was tested for protective efficacy in a preclinical model of infection using HTLV-1 Tax recombinant vaccinia virus and HLA-A*0201 transgenic mice. Mice vaccinated with the multiepitope construct displayed a statistically significant reduction in viral replication that was dependent on CD8 T cells. Reduction in viral replication was also confirmed to be specific to Tax-vaccinia virus. These results demonstrate the activation of Tax-specific CD8+ T cells by vaccination and are supportive of a multivalent peptide vaccine approach against HTLV-1 infections.
Collapse
Affiliation(s)
- Roshni Sundaram
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Taniguchi Y, Nosaka K, Yasunaga JI, Maeda M, Mueller N, Okayama A, Matsuoka M. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2005; 2:64. [PMID: 16242045 PMCID: PMC1289293 DOI: 10.1186/1742-4690-2-64] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/22/2005] [Indexed: 12/13/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-I) causes adult T-cell leukemia (ATL) after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.
Collapse
Affiliation(s)
- Yuko Taniguchi
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kisato Nosaka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Michiyuki Maeda
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Nancy Mueller
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Akihiko Okayama
- Department of Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
39
|
Harashima N, Tanosaki R, Shimizu Y, Kurihara K, Masuda T, Okamura J, Kannagi M. Identification of two new HLA-A*1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation. J Virol 2005; 79:10088-92. [PMID: 16014972 PMCID: PMC1181560 DOI: 10.1128/jvi.79.15.10088-10092.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that Tax-specific CD8(+) cytotoxic T lymphocytes (CTLs), directed to single epitopes restricted by HLA-A2 or A24, expanded in vitro and in vivo in peripheral blood mononuclear cells (PBMC) from some adult T-cell leukemia (ATL) patients after but not before allogeneic hematopoietic stem cell transplantation (HSCT). Here, we demonstrated similar Tax-specific CTL expansion in PBMC from another post-HSCT ATL patient without HLA-A2 or A24, whose CTLs equally recognized two newly identified epitopes, Tax88-96 and Tax272-280, restricted by HLA-A11, suggesting that these immunodominant Tax epitopes are present in the ATL patient in vivo.
Collapse
Affiliation(s)
- Nanae Harashima
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Medical Research Division, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
McGirr KM, Buehring GC. tax and rex Sequences of bovine leukaemia virus from globally diverse isolates: rex amino acid sequence more variable than tax. ACTA ACUST UNITED AC 2005; 52:8-16. [PMID: 15702995 DOI: 10.1111/j.1439-0450.2004.00815.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine leukaemia virus (BLV) is an important agricultural problem with high costs to the dairy industry. Here, we examine the variation of the tax and rex genes of BLV. The tax and rex genes share 420 bases and have overlapping reading frames. The tax gene encodes a protein that functions as a transactivator of the BLV promoter, is required for viral replication, acts on cellular promoters, and is responsible for oncogenesis. The rex facilitates the export of viral mRNAs from the nucleus and regulates transcription. We have sequenced five new isolates of the tax/rex gene. We examined the five new and three previously published tax/rex DNA and predicted amino acid sequences of BLV isolates from cattle in representative regions worldwide. The highest variation among nucleic acid sequences for tax and rex was 7% and 5%, respectively; among predicted amino acid sequences for Tax and Rex, 9% and 11%, respectively. Significantly more nucleotide changes resulted in predicted amino acid changes in the rex gene than in the tax gene (P < or = 0.0006). This variability is higher than previously reported for any region of the viral genome. This research may also have implications for the development of Tax-based vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Consensus Sequence
- Enzootic Bovine Leukosis/virology
- Gene Expression Regulation, Viral
- Gene Products, rex/chemistry
- Gene Products, rex/genetics
- Gene Products, tax/chemistry
- Gene Products, tax/genetics
- Genes, Viral
- Genes, pX
- Leukemia Virus, Bovine/chemistry
- Leukemia Virus, Bovine/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction/veterinary
- Sequence Homology, Nucleic Acid
- Virus Replication
Collapse
Affiliation(s)
- K M McGirr
- School of Public Health, Division of Infectious Diseases, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
41
|
Kannagi M, Harashima N, Kurihara K, Ohashi T, Utsunomiya A, Tanosaki R, Masuda M, Tomonaga M, Okamura J. Tumor immunity against adult T-cell leukemia. Cancer Sci 2005; 96:249-55. [PMID: 15904464 PMCID: PMC11158966 DOI: 10.1111/j.1349-7006.2005.00050.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human T-cell leukemia virus type-I (HTLV-I) causes adult T-cell leukemia (ATL) in a small population of infected individuals after a long incubation period. Although the process of clonal evolution of ATL cells may involve multiple steps, ATL cells from half of the ATL cases still retain the ability to express HTLV-I Tax, a key molecule of HTLV-I leukemogenesis. A recent finding of reactivation of Tax-specific cytotoxic T lymphocytes (CTL) in ATL patients after hematopoietic stem cell transplantation suggests the presence of Tax expression in vivo and potential contribution of the CTL to antitumor immunity. This is consistent with the results of a series of animal experiments indicating that Tax-specific CTL limit the growth of HTLV-I-infected cells in vivo, although the animal model mimics only an early phase of HTLV-I infection and leukemogenesis. Establishment of an insufficient HTLV-I-specific T-cell response and an increased viral load in orally HTLV-I-infected rats suggests that host HTLV-I-specific T-cell response at a primary HTLV-I infection can be a critical determinant of persistent HTLV-I levels thereafter. These findings indicate that Tax-targeted vaccines may be effective for prophylaxis of ATL in a high-risk group, and also for therapy of ATL in at least half the cases.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Medical Research Division, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005; 2:27. [PMID: 15854229 PMCID: PMC1131926 DOI: 10.1186/1742-4690-2-27] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/26/2005] [Indexed: 11/13/2022] Open
Abstract
The clinical entity of adult T-cell leukemia (ATL) was established around 1977, and human T-cell leukemia virus type 1 (HTLV-I) was subsequently identified in 1980. In the 25 years since the discovery of HTLV-I, HTLV-I infection and its associated diseases have been extensively studied, and many of their aspects have been clarified. However, the detailed mechanism of leukemogenesis remains unsolved yet, and the prognosis of ATL patients still poor because of its resistance to chemotherapy and immunodeficiency. In this review, I highlight the recent progress and remaining enigmas in HTLV-I infection and its associated diseases, especially ATL.
Collapse
Affiliation(s)
- Masao Matsuoka
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
43
|
Kurihara K, Harashima N, Hanabuchi S, Masuda M, Utsunomiya A, Tanosaki R, Tomonaga M, Ohashi T, Hasegawa A, Masuda T, Okamura J, Tanaka Y, Kannagi M. Potential immunogenicity of adult T cell leukemia cells in vivo. Int J Cancer 2005; 114:257-67. [PMID: 15551352 DOI: 10.1002/ijc.20737] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental vaccines targeting human T cell leukemia virus type-I (HTLV-I) Tax have been demonstrated in a rat model of HTLV-I-induced lymphomas. However, the scarcity of HTLV-I-expression and the presence of defective HTLV-I-proviruses in adult T cell leukemia (ATL) cells have raised controversy about the therapeutic potential of HTLV-I-targeted immunotherapy in humans. We investigated the expression of HTLV-I antigens in fresh ATL cells by using both in vitro and in vivo assays. In flow cytometric analysis, we found that 3 of 5 acute-type and six of fifteen chronic-type ATL patients tested showed significant induction of HTLV-I Tax and Gag in their ATL cells in a 1-day culture. Concomitantly with HTLV-I-expression, these ATL cells expressed co-stimulatory molecules such as CD80, CD86 and OX40, and showed elevated levels of antigenicity against allogeneic T cells and HTLV-I Tax-specific cytotoxic T-lymphocytes (CTL). Representative CTL epitopes restricted by HLA-A2 or A24 were conserved in 4 of 5 acute-type ATL patients tested. Furthermore, spleen T cells from rats, which had been subcutaneously inoculated with formalin-fixed uncultured ATL cells, exhibited a strong interferon gamma-producing helper T cell responses specific for HTLV-I Tax-expressing cells. Our study indicated that ATL cells from about half the patients tested readily express HTLV-I antigens including Tax in vitro, and that ATL cells express sufficient amounts of Tax or Tax-induced antigens to evoke specific T cell responses in vivo.
Collapse
Affiliation(s)
- Kiyoshi Kurihara
- Department of Immunotherapeutics, Medical Research Division, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kobayashi H, Nagato T, Yanai M, Oikawa K, Sato K, Kimura S, Tateno M, Omiya R, Celis E. Recognition of Adult T-Cell Leukemia/Lymphoma Cells by CD4+ Helper T Lymphocytes Specific for Human T-Cell Leukemia Virus Type I Envelope Protein. Clin Cancer Res 2004; 10:7053-62. [PMID: 15501985 DOI: 10.1158/1078-0432.ccr-04-0897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human T-cell leukemia virus type I (HTLV-I) can cause an adult T-cell leukemia/lymphoma (ATLL). Because ATLL is a life-threatening lymphoproliferative disorder and is resistant to chemotherapy, the establishment and enhancement of T-cell immunity to HTLV-I through the development of therapeutic vaccines could be of value. Thus, the identification of HTLV-I epitopes for both CD8(+) and CD4(+) T cells should facilitate the development of effective vaccines. Although numerous HTLV-I epitopes for CTLs have been identified, few epitopes recognized by CD4(+) helper T cells against this virus have been described. EXPERIMENTAL DESIGN Synthetic peptides prepared from several regions of the HTLV-I envelope (Env) sequence that were predicted to serve as helper T-cell epitopes were prepared with use of computer-based algorithms and tested for their capacity to trigger in vitro helper T-cell responses using lymphocytes from normal volunteers. RESULTS The results show that the HTLV-I-Env(317-331), and HTLV-I-Env(384-398)-reactive helper T lymphocytes restricted by HLA-DQw6 and HLA-DR15, respectively, could recognize intact HTLV-I+ T-cell lymphoma cells and, as a consequence, secrete lymphokines. In addition, HTLV-I Env(196-210)-reactive helper T lymphocytes restricted by HLA-DR9 were able to directly kill HTLV-I+ lymphoma cells and recognize naturally processed antigen derived from killed HTLV-I+ lymphoma cells, which was presented to the helper T cells by autologous antigen-presenting cells. CONCLUSIONS The present findings hold relevance for the design and optimization of T-cell epitope-based immunotherapy against HTLV-I-induced diseases such as ATLL.
Collapse
Affiliation(s)
- Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kannagi M. [Anti-tumor immunity in adult T-cell leukemia]. Uirusu 2004; 54:67-74. [PMID: 15449906 DOI: 10.2222/jsv.54.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type I (HTLV-I)-infected individuals. It has been noted that ATL is incidentally associated with mother-to-child infection which occurs mainly through breast-feeding, elevated levels of proviral load, and insufficiency in HTLV-I-specific cytotoxic T lymphocyte (CTL) responses. Among these, anti-tumor potentials of HTLV-I-specific CTL have been shown in ex vivo analysis of human HTLV-I-infected individuals and also in vivo experiments by using rat models of HTLV-I-infected lymphomas. In another rat model of HTLV-I-infection, orally infected rats showed significantly higher HTLV-I proviral load but lower HTLV-I-specific cellular immune responses than in intraperitoneally infected rats. As a result, persistent viral load was inversely correlated with levels of virus-specific T-cell responses. HTLV-I-specific T-cell responses in orally infected rats recovered by re-immunization. Conversion of Tax-specific T-cell responses from low to high levels was also observed in an ATL patient who obtained complete remission after hematopoietic stem cell transplantation. These findings suggest that HTLV-I-specific immune unresponsiveness associated with oral HTLV-I infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, and that immunological strategies targeting Tax may potentially reduce the risk of ATL and induce therapeutic effects on ATL.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
46
|
Kannagi M, Ohashi T, Harashima N, Hanabuchi S, Hasegawa A. Immunological risks of adult T-cell leukemia at primary HTLV-I infection. Trends Microbiol 2004; 12:346-52. [PMID: 15223062 DOI: 10.1016/j.tim.2004.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small percentage of human T-cell leukemia virus type-I (HTLV-I)-infected individuals develop adult T-cell leukemia (ATL). In animal experiments, inoculation of HTLV-I via the oral route, which is the main route of mother-to-child viral transmission in humans as a result of breastfeeding, induced host HTLV-I-specific T-cell unresponsiveness and resulted in increased viral load. This strongly suggested that the known epidemiological risk factors for ATL (i.e. vertical HTLV-I infection and elevated viral load) are linked by an insufficient HTLV-I-specific T-cell response. Recent findings on the anti-tumor effects of Tax-targeted vaccination in rats and the reactivation of Tax-specific T cells in ATL patients as a result of hematopoietic stem cell transplantation imply promising immunological approaches for the prophylaxis and therapy of ATL.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Medical Research Division, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | | | |
Collapse
|
47
|
Nomura M, Ohashi T, Nishikawa K, Nishitsuji H, Kurihara K, Hasegawa A, Furuta RA, Fujisawa JI, Tanaka Y, Hanabuchi S, Harashima N, Masuda T, Kannagi M. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model. J Virol 2004; 78:3827-36. [PMID: 15047798 PMCID: PMC374260 DOI: 10.1128/jvi.78.8.3827-3836.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- DNA, Viral/genetics
- Female
- Gene Products, tax/genetics
- Gene Products, tax/physiology
- Genes, pX
- Histocompatibility Antigens Class II/metabolism
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/etiology
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Mice
- RNA, Small Interfering/genetics
- Rats
- Rats, Inbred F344
- Rats, Mutant Strains
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Machiko Nomura
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takashi Ohashi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Corresponding author. Mailing address: Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Phone: 81(3)5803-5798. Fax: 81(3)5803-0235. E-mail:
| | - Keiko Nishikawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hironori Nishitsuji
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kiyoshi Kurihara
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Rika A. Furuta
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Jun-ichi Fujisawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Shino Hanabuchi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Nanae Harashima
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
48
|
Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Hanabuchi S, Masuda M, Ohashi T, Fukui F, Hasegawa A, Masuda T, Takaue Y, Okamura J, Kannagi M. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res 2004; 64:391-9. [PMID: 14729650 DOI: 10.1158/0008-5472.can-03-1452] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult T-cell leukemia (ATL) caused by human T-cell leukemia virus type I (HTLV-I) is characterized by poor prognosis after chemotherapy. Recent clinical trials have indicated, however, that allogeneic but not autologous hematopoietic stem cell transplantation (HSCT) for ATL can yield better clinical outcomes. In the present study, we investigated cellular immune responses of ATL patients who obtained complete remission after nonmyeloablative allogeneic peripheral blood HSCT from HLA-identical sibling donors. In the culture of peripheral blood mononuclear cells (PBMCs) from a post-HSCT but not pre-HSCT ATL patient, CD8(+) CTLs proliferated vigorously in response to stimulation with autologous HTLV-I-infected T cells that had been established before HSCT in vitro. These CTLs contained a large number of monospecific CTL population directed to a HLA-A2-restricted HTLV-I Tax 11-19 epitope. The frequency of Tax 11-19-specific CD8+ CTLs in this patient markedly increased also in vivo after HSCT, as determined by staining with HLA-A2/Tax 11-19 tetramers. Similar clonal expansion of HTLV-I Tax-specific CTLs exclusively directed to a HLA-A24-restricted Tax 301-309 epitope was observed in the PBMCs from another ATL patient after HSCT from a HTLV-I-negative donor. Among four post-HSCT ATL patients tested, HTLV-I-specific CTLs were induced in the PBMC culture from three patients but not from the remaining one who had later recurrence of ATL. These observations suggested that reconstituted immunity against antigen presentation in ATL patients after HSCT resulted in strong and selective graft-versus-HTLV-I response, which might contribute to graft-versus-leukemia effects.
Collapse
Affiliation(s)
- Nanae Harashima
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Medical Research Division, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arnulf B, Thorel M, Poirot Y, Tamouza R, Boulanger E, Jaccard A, Oksenhendler E, Hermine O, Pique C. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma. Leukemia 2003; 18:126-32. [PMID: 14574331 DOI: 10.1038/sj.leu.2403176] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy (HAM). In asymptomatic carriers and HAM patients, HTLV-1 infection leads to a vigorous cytotoxic T-cell (CTL) response mainly directed to the regulatory Tax protein. In contrast, initial studies showed that anti-HTLV-1 CTL activities were not reproductively detected in ATLL patients, neither ex vivo, nor after in vitro restimulation. To better understand this discrepancy, we explored the anti-HTLV-1 CD8+ T-cell response of eight ATLL patients by using in vitro restimulated or freshly isolated CD8+ T cells. In all the ATLL patients, we found that mitogenic activation allowed the induction of CD8+ T cells able to lyse autologous HTLV-1-infected cells and/or to produce IFNgamma in response to Tax peptides. In contrast, only a minority of the patients possessed CD8+ cells able to respond ex vivo to the same epitopes. These findings indicate that although a restimulatable anti-HTLV-1 CTL activity persists during ATLL, the specific ex vivo response is not constantly maintained. This provides definitive evidence that the CD8+ T-cell response to HTLV-1 is affected by ATLL development and reveals that a major defect concerns the generation and/or the functionality of CD8+ effectors.
Collapse
Affiliation(s)
- B Arnulf
- Service d'Hématologie and Centre National de la Recherche Scientifique, UMR 8603, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gabet AS, Gessain A, Wattel E. High simian T-cell leukemia virus type 1 proviral loads combined with genetic stability as a result of cell-associated provirus replication in naturally infected, asymptomatic monkeys. Int J Cancer 2003; 107:74-83. [PMID: 12925959 DOI: 10.1002/ijc.11329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian T-cell leukemia virus type 1 (STLV-1) is a primate T cell leukemia virus of the group of oncogenic delta retroviruses. Sharing a high level of genetic homology with human T cell leukemia virus type 1 (HTLV-1), it is etiologically linked to the development of simian T cell malignancies that closely resemble HTLV-1 associated leukemias and lymphomas and might thus constitute an interesting model of study. The precise nature of STLV-1 replication in vivo remains unknown. The STLV-1 circulating proviral load of 14 naturally infected Celebes macaques (Macaca tonkeana) was measured by real-time quantitative PCR. The mean proportion of infected peripheral mononuclear cells was 7.9%, ranging from <0.4% to 38.9%. Values and distributions were closely reminiscent of those observed in symptomatic and asymptomatic HTLV-1 infected humans. Sequencing more than 32 kb of LTRs deriving from 2 animals with high proviral load showed an extremely low STLV-1 genetic variability (0.113%). This paradoxical combination of elevated proviral load and remarkable genetic stability was finally explained by the demonstration of a cell-associated dissemination of the virus in vivo. Inverse PCR (IPCR) amplification of STLV-1 integration sites evidenced clones of infected cells in all infected animals. The pattern of STLV-1 replication in these asymptomatic monkeys was indistinguishable from that of HTLV-1 in asymptomatic carriers or in patients with inflammatory diseases. We conclude that, as HTLV-1, STLV-1 mainly replicates by the clonal expansion of infected cells; accordingly, STLV-1 natural monkey infection constitutes an appropriate and promising model for the study of HTLV-1 associated leukemogenesis in vivo.
Collapse
|