1
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024; 43:1137-1163. [PMID: 39363128 PMCID: PMC11554763 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
2
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Han H, Shi Q, Zhang Y, Ding M, He X, Liu C, Zhao D, Wang Y, Du Y, Zhu Y, Yuan Y, Wang S, Guo H, Wang Q. RBM12 drives PD-L1-mediated immune evasion in hepatocellular carcinoma by increasing JAK1 mRNA translation. Oncogene 2024; 43:3062-3077. [PMID: 39187545 DOI: 10.1038/s41388-024-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Immunosuppression characterizes the tumour microenvironment in HCC, and recent studies have implicated RNA-binding proteins (RBPs) in the development of HCC. Here, we conducted a screen and identified RBM12 as a key protein that increased the expression of PD-L1, thereby driving immune evasion in HCC. Furthermore, RBM12 was found to be significantly upregulated in HCC tissues and was associated with a poor prognosis for HCC patients. Through various molecular assays and high-throughput screening, we determined that RBM12 could directly bind to the JAK1 mRNA via its 4th-RRM (RNA recognition motif) domain and recruit EIF4A2 through its 2nd-RRM domain, enhancing the distribution of ribosomes on JAK1 mRNA, which promotes the translation of JAK1 and the subsequent upregulation of its expression. As a result, the activated JAK1/STAT1 pathway transcriptionally upregulates PD-L1 expression, facilitating immune evasion in HCC. In summary, our findings provide insights into the significant contribution of RBM12 to immune evasion in HCC, highlighting its potential as a therapeutic target in the future. This graphical abstract shows that elevated expression of RBM12 in HCC can augment PD-L1-mediated tumour immune evasion by increasing the efficiency of JAK1 mRNA translation.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Qian Shi
- Huzhou Key Laboratory of Translational Medicine, The First Affliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Mingdong Ding
- Department of Infectious Diseases, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Xianzhong He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, 230000, China
| | - Cuixia Liu
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Dakun Zhao
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yifan Wang
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yanping Du
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yichao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yin Yuan
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China.
| | - Siliang Wang
- Department of pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, 230000, China.
| |
Collapse
|
4
|
Fountzilas E, Tsimberidou AM, Hiep Vo H, Kurzrock R. Tumor-agnostic baskets to N-of-1 platform trials and real-world data: Transforming precision oncology clinical trial design. Cancer Treat Rev 2024; 125:102703. [PMID: 38484408 DOI: 10.1016/j.ctrv.2024.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Choosing the right drug(s) for the right patient via advanced genomic sequencing and multi-omic interrogation is the sine qua non of precision cancer medicine. Traditional cancer clinical trial designs follow well-defined protocols to evaluate the efficacy of new therapies in patient groups, usually identified by their histology/tissue of origin of their malignancy. In contrast, precision medicine seeks to optimize benefit in individual patients, i.e., to define who benefits rather than determine whether the overall group benefits. Since cancer is a disease driven by molecular alterations, innovative trial designs, including biomarker-defined tumor-agnostic basket trials, are driving ground-breaking regulatory approvals and deployment of gene- and immune-targeted drugs. Molecular interrogation further reveals the disruptive reality that advanced cancers are extraordinarily complex and individually distinct. Therefore, optimized treatment often requires drug combinations and N-of-1 customization, addressed by a new generation of N-of-1 trials. Real-world data and structured master registry trials are also providing massive datasets that are further fueling a transformation in oncology. Finally, machine learning is facilitating rapid discovery, and it is plausible that high-throughput computing, in silico modeling, and 3-dimensional printing may be exploitable in the near future to discover and design customized drugs in real time.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St Luke's Clinic, Thessaloniki, Greece; European University Cyprus, German Oncology Center, Nicosia, Cyprus
| | - Apostolia-Maria Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA.
| | - Henry Hiep Vo
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA
| | - Razelle Kurzrock
- WIN Consortium for Precision Medicine, France; Medical College of Wisconsin, USA
| |
Collapse
|
5
|
Nikas IP, Park SY, Song MJ, Lee C, Ryu HS. Expression of EGFR, PD-L1, and the mismatch repair proteins before and following therapy in malignant serous effusions with metastatic high-grade serous tubo-ovarian carcinoma. Diagn Cytopathol 2024; 52:69-75. [PMID: 37937321 DOI: 10.1002/dc.25248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
AIM To compare the immunochemical expression of EGFR, PD-L1, and the mismatch repair (MMR) proteins MLH1, PMS2, MSH2, and MSH6 between matched malignant effusions obtained before and following the administration of chemotherapy in patients with high-grade serous tubo-ovarian carcinoma (HGSC). METHODS In the enrolled HGSCs, matched formalin-fixed and paraffin-embedded cell blocks (CBs) from effusions sampled before (treatment-naïve patients) and during recurrence (following chemotherapy administration), in addition to their matched HGSC tissues obtained from the ovaries at initial diagnosis (treatment-naïve patients), were subjected to EGFR, PD-L1, and MMR immunochemical analysis. RESULTS EGFR was more often overexpressed in effusions obtained after chemotherapy administration compared to both effusions (100% vs. 57.1%) and their matched tubo-ovarian tumors (100% vs. 7.1%) from treatment-naïve patients, respectively. EGFR immunochemistry was concordant in just 9.1% of the effusions sampled during recurrence and their paired ovarian samples before recurrence. Whereas all HGSC treatment-naïve samples (ovarian lesions and effusions) were PD-L1 negative, 3/11 (27.3%) malignant effusions obtained during recurrence showed PD-L1 overexpression. Lastly, none of the tested HGSC samples exhibited MMR deficiency. CONCLUSION Measuring biomarkers using CBs from malignant effusions may provide clinicians with significant information related to HGSC prognosis and therapy selection, especially in patients with resistance to chemotherapy.
Collapse
Affiliation(s)
- Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Soo-Young Park
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li A, Wang Y, Yu Z, Tan Z, He L, Fu S, Shi M, Du W, Luo L, Li Z, Liu J, Zhou Y, Fang W, Yang Y, Zhang L, Hong S. STK11/LKB1-Deficient Phenotype Rather Than Mutation Diminishes Immunotherapy Efficacy and Represents STING/Type I Interferon/CD8 + T-Cell Dysfunction in NSCLC. J Thorac Oncol 2023; 18:1714-1730. [PMID: 37495171 DOI: 10.1016/j.jtho.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Conflicting findings have been reported regarding the association between STK11/LKB1 mutations and immune checkpoint inhibitor (ICB) efficacy in NSCLC. It has been reported that tumors could exhibit impaired STK11/LKB1 function even without STK11 mutations. We hypothesized that STK11 phenotype rather than mutation may better stratify ICB outcomes. METHODS Selected functional STK11 events and LKB1 protein data were leveraged to establish a transcriptomics-based classifier of STK11 phenotype (STK11-deficient [-def] or -proficient [-prof]). We analyzed in-house and Genentech/Roche's data of three randomized trials of programmed cell death protein-1 or programmed death-ligand 1 (PD-L1) inhibition in NSCLC (ORIENT-11, n = 171; OAK, n = 699; POPLAR, n = 192) and The Cancer Genome Atlas-NSCLC cohort. RESULTS Tissue STK11 mutation did not affect ICB outcomes. However, the survival benefit of ICB versus chemotherapy were lost or reversed in STK11-def tumors (hazard ratios for death, 95% confidence interval: OAK [0.97, 0.69-1.35]; POPLAR [1.61, 0.88-2.97]; ORIENT-11 [1.07, 0.50-2.29]), while remaining in STK11-prof tumors (hazard ratios for death, 95% confidence interval: OAK [0.81, 0.66-0.99]; POPLAR [0.66, 0.46-0.95]; ORIENT-11 [0.59, 0.37-0.92]). In tumors differentially classified by phenotype and mutation status, STK11-wild-type/def tumors had significantly worse ICB outcomes than STK11-mutated (STK11-MUT)/prof tumors (p < 0.05). The deleterious impact of STK11 deficiency was independent of STK11/KRAS/KEAP1 status or PD-L1 expression. The STING/interferon-I signaling, which was previously shown to be suppressed in STK11-MUT models, was perturbed in patients with STK11-def tumors rather than those with STK11-MUT tumors. Surprisingly, whereas high CD8+ T-cell infiltration was significantly associated with prolonged survival with ICB in STK11-prof tumors (p < 0.05 for 3 trials), it predicted an opposite trend toward worse ICB outcomes in STK11-def tumors across three trials. This suggested an association between STK11 deficiency and CD8+ T-cell dysfunction, which might not be reversed by programmed cell death protein 1 or PD-L1 blockade. CONCLUSIONS STK11 phenotype rather than mutation status can accurately identify patients with ICB-refractory NSCLC and reflect immune suppression. It can help refine stratification algorithms for future clinical research and also provide a reliable resource aiding basic and translational studies in identifying therapeutic targets.
Collapse
Affiliation(s)
- Anlin Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yuanyuan Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhixin Yu
- State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zihui Tan
- State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lina He
- State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Sha Fu
- Department of Cellular and Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mengting Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Du
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Linfeng Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhichao Li
- State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiaqing Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yixin Zhou
- State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South People's Republic of China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Shao F, Jin K, Li B, Liu Z, Zeng H, Wang Y, Zhu Y, Xu L, Xu J, Wang Z, Chang Y, Zhang W. Integrating angiogenesis signature and tumor mutation burden for improved patient stratification in immune checkpoint blockade therapy for muscle-invasive bladder cancer. Urol Oncol 2023; 41:433.e9-433.e18. [PMID: 37625906 DOI: 10.1016/j.urolonc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC) patients have benefitted greatly from immune checkpoint blockade (ICB) therapy. However, there is a pressing need to identify factors underlying the heterogeneity of clinical responses to ICB. METHODS We conducted a study on 848 MIBC patients from 4 independent cohorts to investigate the key biological characteristics affecting ICB responses. The IMvigor210 cohort (n = 234) was used to identify the key factor, followed by exploration of the correlation between tumor angiogenesis and immune suppression in the IMvigor210, TCGA (n = 391), and UNC-108 (n = 89) cohorts. The ZSHS cohort (n = 134) was used for validation. Additionally, we integrated angiogenesis signature with tumor mutation burden (TMB) to decipher the heterogeneity of clinical outcomes to ICB in MIBC patients. RESULTS Our analysis revealed that nonresponders to PD-L1 blockade were enriched with angiogenesis signature. Furthermore, we observed a correlation between angiogenesis signature and decreased neoantigen load, downregulated T-cell antigen recognition, and noninflamed immunophenotype. We identified a subgroup of patients resistant to ICB, characterized by high angiogenesis signature and low tumor mutation burden (TMB), and found the activation of TGF-β signaling and downregulation of T-cell cytolytic signatures in this subgroup. CONCLUSIONS The study concluded that angiogenesis signature is closely associated with an immunosuppressive microenvironment, leading to resistance to ICB therapy in MIBC patients. The study further suggested that the combination of angiogenesis signature and TMB can serve as an integrated biomarker for better stratification of patients' clinical outcomes to ICB therapy.
Collapse
Affiliation(s)
- Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Fountzilas E, Vo HH, Mueller P, Kurzrock R, Tsimberidou AM. Correlation between biomarkers and treatment outcomes in diverse cancers: a systematic review and meta-analysis of phase I and II immunotherapy clinical trials. Eur J Cancer 2023; 189:112927. [PMID: 37364526 PMCID: PMC10528229 DOI: 10.1016/j.ejca.2023.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Many immuno-oncology (IO) trials are conducted without biomarker selection. We performed a meta-analysis of phase I/II clinical trials evaluating immune checkpoint inhibitors (ICIs) to determine the association between biomarkers and clinical outcomes, if any. METHODS A PubMed search for phase I/II clinical trials with drugs approved by the Food and Drug Administration (labelled, off-label, combined with investigational ICIs or other treatment modalities) from 2018 to 2020 was performed. The objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) were compared between biomarker-positive and biomarker-negative groups, using studies that explored the correlation of biomarkers with outcomes. RESULTS Overall, 174 clinical studies that included 19,178 patients were identified, and 132 studies investigated>30 correlative biomarkers that included PD-L1 expression (≥1%, 111 studies), tumour mutational burden (20 studies) and microsatellite instability/mismatch repair deficiency (10 studies). Overall, 123, 46 and 30 cohorts (drugs, tumour types or biomarkers) with 11,692, 3065, and 2256 patient outcomes for ORR, PFS and OS, respectively, were analysed in correlation with biomarkers. Meta-analyses demonstrated that ICIs in patients with biomarker-positive tumours were associated with higher ORR (odds ratio 2.15 [95% CI, 1.79-2.58], p < 0.0001); and longer PFS (hazard ratio [HR] 0.55 [95% CI, 0.45-0.67], p < 0.0001), and OS (HR 0.65 [95% CI, 0.53-0.80], p < 0.0001) compared with those with biomarker-negative tumours. Significance for ORR and PFS was retained in multivariate analysis (p < 0.001) (OS, not included owing to the small number of trials reporting OS). CONCLUSION Our data suggest that IO biomarkers should be used in patient selection for ICIs. Prospective studies are warranted.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St Luke's Clinic, Thessaloniki, Greece; European University Cyprus, Limassol, Cyprus
| | - Henry Hiep Vo
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA
| | - Peter Mueller
- Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA
| | - Razelle Kurzrock
- WIN Consortium for Precision Medicine, Paris, France; Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Apostolia-Maria Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA.
| |
Collapse
|
9
|
Saar M, Jaal J, Meltsov A, Laasfeld T, Lust H, Kasvandik S, Lavogina D. Exploring the Molecular Players behind the Potentiation of Chemotherapy Effects by Durvalumab in Lung Adenocarcinoma Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15051485. [PMID: 37242727 DOI: 10.3390/pharmaceutics15051485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.
Collapse
Affiliation(s)
- Marika Saar
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411 Tartu, Estonia
- Pharmacy, Tartu University Hospital, 50406 Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Haematology and Oncology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Alvin Meltsov
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Department of Computer Science, University of Tartu, 51009 Tartu, Estonia
| | - Helen Lust
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
10
|
Yao N, Jiang W, Wang Y, Song Q, Cao X, Zheng W, Zhang J. An immune-related signature for optimizing prognosis prediction and treatment decision of hepatocellular carcinoma. Eur J Med Res 2023; 28:123. [PMID: 36918943 PMCID: PMC10015788 DOI: 10.1186/s40001-023-01091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND An immune-related gene signature (IGS) was established for discriminating prognosis, predicting benefit of immunotherapy, and exploring therapeutic options in hepatocellular carcinoma (HCC). METHODS Based on Immune-related hub genes and The Cancer Genome Atlas (TCGA) LIHC dataset (n = 363), an immune-related gene signature (IGS) was established by least absolute shrinkage and selection operator (LASSO) analysis. The prognostic significance and clinical implications of IGS were verified in International Cancer Genome Consortium (ICGC) and Chinese HCC (CHCC) cohorts. The molecular and immune characteristics and the benefit of immune checkpoint inhibitor (ICI) therapy in IGS-defined subgroups were analyzed. In addition, by leveraging the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing datasets, we determined the potential therapeutic agents for high IGS-risk patients. RESULTS The IGS was constructed based on 8 immune-related hub genes with individual coefficients. The IGS risk model could robustly predict the survival of HCC patients in TCGA, ICGC, and CHCC cohorts. Compared with 4 previous established immune genes-based signatures, IGS exhibited superior performance in survival prediction. Additionally, for immunological characteristics and enriched pathways, a low-IGS score was correlated with IL-6/JAK/STAT3 signaling, inflammatory response and interferon α/γ response pathways, low TP53 mutation rate, high infiltration level, and more benefit from ICI therapy. In contrast, high IGS score manifested an immunosuppressive microenvironment and activated aggressive pathways. Finally, by in silico screening potential compounds, vindesine, ispinesib and dasatinib were identified as potential therapeutic agents for high-IGS risk patients. CONCLUSIONS This study developed a robust IGS model for survival prediction of HCC patients, providing new insights into integrating tailored risk stratification with precise immunotherapy and screening potentially targeted agents.
Collapse
Affiliation(s)
- Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Wei Jiang
- Department of Neurology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yilang Wang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Xiaolei Cao
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
11
|
Tomlins SA, Khazanov NA, Bulen BJ, Hovelson DH, Shreve MJ, Lamb LE, Matrana MR, Burkard ME, Yang ESH, Edenfield WJ, Dees EC, Onitilo AA, Thompson M, Buchschacher GL, Miller AM, Menter A, Parsons B, Wassenaar T, Hwang LC, Suga JM, Siegel R, Irvin W, Nair S, Slim JN, Misleh J, Khatri J, Masters G, Thomas S, Safa M, Anderson DM, Kwiatkowski K, Mitchell K, Hu-Seliger T, Drewery S, Fischer A, Plouffe K, Czuprenski E, Hipp J, Reeder T, Vakil H, Johnson DB, Rhodes DR. Development and validation of an integrative pan-solid tumor predictor of PD-1/PD-L1 blockade benefit. COMMUNICATIONS MEDICINE 2023; 3:14. [PMID: 36750617 PMCID: PMC9905474 DOI: 10.1038/s43856-023-00243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Anti-PD-1 and PD-L1 (collectively PD-[L]1) therapies are approved for many advanced solid tumors. Biomarkers beyond PD-L1 immunohistochemistry, microsatellite instability, and tumor mutation burden (TMB) may improve benefit prediction. METHODS Using treatment data and genomic and transcriptomic tumor tissue profiling from an observational trial (NCT03061305), we developed Immunotherapy Response Score (IRS), a pan-tumor predictive model of PD-(L)1 benefit. IRS real-world progression free survival (rwPFS) and overall survival (OS) prediction was validated in an independent cohort of trial patients. RESULTS Here, by Cox modeling, we develop IRS-which combines TMB with CD274, PDCD1, ADAM12 and TOP2A quantitative expression-to predict pembrolizumab rwPFS (648 patients; 26 tumor types; IRS-High or -Low groups). In the 248 patient validation cohort (248 patients; 24 tumor types; non-pembrolizumab PD-[L]1 monotherapy treatment), median rwPFS and OS are significantly longer in IRS-High vs. IRS-Low patients (rwPFS adjusted hazard ratio [aHR] 0.52, p = 0.003; OS aHR 0.49, p = 0.005); TMB alone does not significantly predict PD-(L)1 rwPFS nor OS. In 146 patients treated with systemic therapy prior to pembrolizumab monotherapy, pembrolizumab rwPFS is only significantly longer than immediately preceding therapy rwPFS in IRS-High patients (interaction test p = 0.001). In propensity matched lung cancer patients treated with first-line pembrolizumab monotherapy or pembrolizumab+chemotherapy, monotherapy rwPFS is significantly shorter in IRS-Low patients, but is not significantly different in IRS-High patients. Across 24,463 molecularly-evaluable trial patients, 7.6% of patients outside of monotherapy PD-(L)1 approved tumor types are IRS-High/TMB-Low. CONCLUSIONS The validated, predictive, pan-tumor IRS model can expand PD-(L)1 monotherapy benefit outside currently approved indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Burkard
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eddy Shih-Hsin Yang
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | | | - E Claire Dees
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Adedayo A Onitilo
- Cancer Care and Research Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Michael Thompson
- Aurora Cancer Care, Advocate Aurora Health, Milwaukee, WI, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Alan M Miller
- SCL Health-CO, Broomfield, CO, USA
- Translational Drug Development, Scottsdale, USA
| | | | | | | | - Leon C Hwang
- Kaiser Permanente of the Mid-Atlantic States, Rockville, MD, USA
| | - J Marie Suga
- Kaiser Permanente Northern California, Vallejo, CA, USA
| | - Robert Siegel
- Bon Secours St. Francis Cancer Center, Greenville, SC, USA
| | | | - Suresh Nair
- Lehigh Valley Topper Cancer Institute, Allentown, PA, USA
| | | | | | - Jamil Khatri
- ChristianaCare Oncology Hematology, Newark, DE, USA
| | - Gregory Masters
- Medical Oncology Hematology Consultants, Helen F Graham Cancer Center and Research Institute,, Newark, DE, USA
| | - Sachdev Thomas
- Kaiser Permanente - Northern California, Oakland, CA, USA
| | | | - Daniel M Anderson
- Metro-Minnesota Community Oncology Research Consortium, St. Louis Park, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
13
|
Pang LL, Liao J, Huang YH, Gan JD, Zhuang WT, Lv Y, Liang WT, Zhang L, Fang WF. Exploration of immunotherapy in advanced pulmonary lymphoepithelioma-like carcinoma. Int J Cancer 2023; 152:2338-2350. [PMID: 36631999 DOI: 10.1002/ijc.34426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Pulmonary lymphoepithelioma-like carcinoma (PLELC) is a rare and histologically distinctive subtype of nonsmall cell lung cancer (NSCLC). High expression of programmed death ligand 1 (PD-L1) and scarcity of druggable driver mutations raise the potential of immunotherapy for advanced PELEC. However, evidence on the clinical impact of immune-checkpoint inhibitors (ICIs) remained limited and unconvincing. The present study retrospectively enrolled advanced PLELC patients who received ICIs either as up-front or salvage therapy in SYSUCC between March 15, 2017 and March 15, 2022. The comparative efficacy of chemoimmunotherapy vs chemotherapy in the first-line setting and chemoimmunotherapy vs ICIs monotherapy in the ≥2 line setting was investigated. A total of 96 patients were finally enrolled; 49 PLELC patients received immunotherapy plus platinum-based chemotherapy, while 45 patients received platinum-based chemotherapy as first-line treatment. Patients with chemoimmunotherapy significantly obtain more survival benefits than those receiving chemotherapy (median progression-free survival [PFS]: 15.6 vs 8.6 months, P = .0015). Additionally, patients with chemoimmunotherapy obtained more PFS benefits than those with ICIs monotherapy in the ≥2 line of therapy (median PFS: 21.7 months vs 7.8 months, P = .094). A significant correlation was observed between prognostic nutritional index (PNI) and favorable treatment outcomes in patients receiving first-line chemoimmunotherapy (median PFS: 17.8 months vs 7.6 months, P < .0001). Likewise, patients in the monocyte-to-lymphocyte ratio (MLR)-high group had significantly shorter PFS than the MLR-low group (median PFS: 11.2 months vs not reached, P = .0009). Our study elucidated the superior efficacy of ICIs therapy, especially chemoimmunotherapy in advanced PLELC, which may provide new insight into the role of immunotherapy in advanced PLELC.
Collapse
Affiliation(s)
- Lan-Lan Pang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Liao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Hua Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Di Gan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Tao Zhuang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Lv
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ting Liang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Feng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Jiang G, Wu Q, Li B. Evaluation of immunotherapy efficacy in gynecologic cancer. Front Immunol 2023; 14:1061761. [PMID: 36793735 PMCID: PMC9922993 DOI: 10.3389/fimmu.2023.1061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Various immunotherapies have demonstrated remarkable success over the past few decades, and have been approved for the treatment of different cancer types. However, patient responses to immunotherapy are variable, and approximately 50% of cases are refractory to these agents. Tumor biomarker-based stratification of cases may therefore help identify subpopulations that are sensitive/resistant to immunotherapy; it may also improve prediction of response in various cancers including gynecologic cancer. These biomarkers include the tumor mutational burden, microsatellite instability, mismatch repair deficiency, T cell-inflamed gene expression profile, programmed cell death protein 1 ligand 1, tumor-infiltrating lymphocytes, and numerous other genomic alterations. Future directions in the treatment of gynecologic cancer include the utilization of these biomarkers to select ideal candidates. This review focused on recent advances in the predictive ability of molecular biomarkers in patients with gynecologic cancer who undergo immunotherapy. The most recent developments in combined immunotherapy and targeted therapy strategies and novel immune interventions against gynecologic cancers have also been discussed.
Collapse
Affiliation(s)
- Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Somatic ARID1A mutation stratifies patients with gastric cancer to PD-1 blockade and adjuvant chemotherapy. Cancer Immunol Immunother 2022; 72:1199-1208. [PMID: 36369379 PMCID: PMC10110689 DOI: 10.1007/s00262-022-03326-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
AT-rich interaction domain 1A (ARID1A) encodes a vital component of switch/sucrose non-fermentable chromatin-remodeling complex. Given its association with genomic instability, we conducted this study to determine whether ARID1A mutation status had an impact on therapeutic responsiveness in gastric cancer (GC), especially combinatory chemo-immunotherapy.
Methods
We retrospectively enrolled a total of 1162 patients from five independent cohorts. ZSHS Cohort and TCGA Cohort were designed to inform chemotherapeutic relevance and immunobiology of ARID1A-mutant GC based on tissue samples and sequencing data, respectively. MSKCC Cohort, mGC Cohort, and Melanoma Cohort were utilized to interrogate the predictive efficacy of ARID1A mutation to programmed cell death protein 1 (PD-1) blockade.
Results
ARID1A mutation was enriched in EBV-positive, hypermutated-single nucleotide variant and microsatellite-unstable subtype GC, and was predictive of responsiveness to both fluorouracil-based chemotherapy and PD-1 blockade. Specifically, ARID1A mutation score was a highly sensitive indicator (91%) of response to pembrolizumab. Mechanistically, ARID1A mutation correlated with extensive DNA damage repair deficiency and immunogenic tumor microenvironment (TME) featured by elevated activated subsets of CD8+ T cells, CD4+ T cells, and NK cells. Type 17T helper cells were typically abundant in ARID1A-mutant GC and might be a precondition for chemosensitivity conferred by ARID1A mutation. Furthermore, ARID1A mutation indicated elevated expression of VEGFA and CLDN18, as well as over-representation of ERBB2 and FGFR2 signaling pathway.
Conclusions
ARID1A-mutant GC displayed immunogenic TME and might be a candidate for both monotherapy and the combination of frontline chemotherapy and PD-1 blockade.
Collapse
|
16
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yan-Cheng Dai,
| |
Collapse
|
17
|
Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells 2022; 11:cells11193114. [PMID: 36231076 PMCID: PMC9563580 DOI: 10.3390/cells11193114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Research and advancing understanding of the tumor immune microenvironment (TIME) is vital to optimize and direct more effective cancer immune therapy. Pre-clinical bench research is vital to better understand the genomic interplay of the TIME and immune therapy responsiveness. However, a vital key to effective translational cancer research is having a bridge of translation to bring that understanding from the bench to the bedside. Without that bridge, research into the TIME will lack an efficient and effective translation into the clinic and cancer treatment decision making. As a clinical oncologist, the purpose of this commentary is to emphasize the importance of researching and improving clinical utility of the bridge, as well as the TIME research itself.
Collapse
|
18
|
Prevalence of ARID1A Mutations in Cell-Free Circulating Tumor DNA in a Cohort of 71,301 Patients and Association with Driver Co-Alterations. Cancers (Basel) 2022; 14:cancers14174281. [PMID: 36077815 PMCID: PMC9454642 DOI: 10.3390/cancers14174281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
ARID1A abnormalities disturb transcriptional processes regulated by chromatin remodeling and correlate with immunotherapy responsiveness. We report the first blood-based cell-free DNA (cfDNA) next-generation sequencing (NGS) ARID1A analysis. From November 2016 through August 2019, 71,301 patients with advanced solid tumors underwent clinical blood-derived cfDNA testing. Of these patients, 62,851 (88%) had ≥1 cfDNA alteration, and 3137 (of the 62,851) (5%) had ≥1 deleterious ARID1A alteration (a frequency similar to the ~6% generally reported in tissue NGS), suggesting this non-invasive test’s value in interrogating ARID1A. ARID1A cfDNA alterations were most frequent in endometrial cancer, 21.3% of patients; bladder cancer, 12.9%; gastric cancer, 11%; cholangiocarcinoma, 10.9%; and hepatocellular carcinoma, 10.6%. Blood samples with a functional ARID1A abnormality had more alterations/sample (median, 6 versus 4; p < 0.0001) and more frequent co-alterations in ≥1 gene in key oncogenic pathways: signal transduction, RAS/RAF/MAPK, PI3K/Akt/mTor, and the cell cycle. Taken together, our data suggest that liquid (blood) biopsies identify ARID1A alterations at a frequency similar to that found in primary tumor material. Furthermore, co-alterations in key pathways, some of which are pharmacologically tractable, occurred more frequently in samples with functional (deleterious) ARID1A alterations than in those without such aberrations, which may inform therapeutic strategies.
Collapse
|
19
|
Wang X, Xu Z, Liu Z, Lin W, Cao Z, Feng X, Gao Y, He J. Characterization of the Immune Cell Infiltration Landscape Uncovers Prognostic and Immunogenic Characteristics in Lung Adenocarcinoma. Front Genet 2022; 13:902577. [PMID: 35677561 PMCID: PMC9168373 DOI: 10.3389/fgene.2022.902577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The immune cell infiltration in TME has been reported to be associated with prognosis and immunotherapy efficiency of lung cancers. However, to date, the immune infiltrative landscape of lung adenocarcinoma (LUAD) has not been elucidated yet. Therefore, this study aimed to identify a new transcriptomic-based TME classification and develop a risk scoring system to predict the clinical outcomes of patients with LUAD. We applied “CIBERSORT” algorithm to analyze the transcriptomic data of LUAD samples and classified LUAD into four discrete subtypes according to the distinct immune cell infiltration patterns. Furthermore, we established a novel predictive tool (TMEscore) to quantify the immune infiltration patterns for each LUAD patient by principal component analysis. The TMEscore displayed as a reliable and independent prognostic biomarker for LUAD, with worse survival in TMEscrore-high patients and better survival in TMEscrore-low patients in both TCGA and other five GEO cohorts. In addition, enriched pathways and genomic alterations were also analyzed and compared in different TMEscore subgroups, and we observed that high TMEscore was significantly correlated with more aggressive molecular changes, while the low TMEscore subgroup enriched in immune active-related pathways. The TMEscore-low subtype showed overexpression of PD-1, CTLA4, and associations of other markers of sensitivity to immunotherapy, including TMB, immunophenoscore (IPS) analysis, and tumor immune dysfunction and exclusion (TIDE) algorithm. Conclusively, TMEscore is a promising and reliable biomarker to distinguish the prognosis, the molecular and immune characteristics, and the benefit from ICIs treatments in LUAD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhilin Liu
- Department of Biostatistics, Peking University, Beijing, China
| | - Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- *Correspondence: Yibo Gao, ; Jie He,
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| |
Collapse
|
20
|
Huyghe N, Benidovskaya E, Stevens P, Van den Eynde M. Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers (Basel) 2022; 14:2241. [PMID: 35565369 PMCID: PMC9105843 DOI: 10.3390/cancers14092241] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) are well recognized as a major immune treatment modality for multiple types of solid cancers. However, for colorectal cancer (CRC), ICIs are only approved for the treatment of Mismatch-Repair-Deficient and Microsatellite Instability-High (dMMR/MSI-H) tumors. For the vast majority of CRC, that are not dMMR/MSI-H, ICIs alone provide limited to no clinical benefit. This discrepancy of response between CRC and other solid cancers suggests that CRC may be inherently resistant to ICIs alone. In translational research, efforts are underway to thoroughly characterize the immune microenvironment of CRC to better understand the mechanisms behind this resistance and to find new biomarkers of response. In the clinic, trials are being set up to study biomarkers along with treatments targeting newly discovered immune checkpoint molecules or treatments combining ICIs with other existing therapies to improve response in MSS CRC. In this review, we will focus on the characteristics of response and resistance to ICIs in CRC, and discuss promising biomarkers studied in recent clinical trials combining ICIs with other therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Elena Benidovskaya
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Philippe Stevens
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
- Institut Roi Albert II, Department of Medical Oncology and Gastroenterology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
| |
Collapse
|
21
|
Gudkov A, Shirokorad V, Kashintsev K, Sokov D, Nikitin D, Anisenko A, Borisov N, Sekacheva M, Gaifullin N, Garazha A, Suntsova M, Koroleva E, Buzdin A, Sorokin M. Gene Expression-Based Signature Can Predict Sorafenib Response in Kidney Cancer. Front Mol Biosci 2022; 9:753318. [PMID: 35359606 PMCID: PMC8963850 DOI: 10.3389/fmolb.2022.753318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/28/2022] [Indexed: 01/07/2023] Open
Abstract
Sorafenib is a tyrosine kinase inhibitory drug with multiple molecular specificities that is approved for clinical use in second-line treatments of metastatic and advanced renal cell carcinomas (RCCs). However, only 10–40% of RCC patients respond on sorafenib-containing therapies, and personalization of its prescription may help in finding an adequate balance of clinical efficiency, cost-effectiveness, and side effects. We investigated whether expression levels of known molecular targets of sorafenib in RCC can serve as prognostic biomarker of treatment response. We used Illumina microarrays to profile RNA expression in pre-treatment formalin-fixed paraffin-embedded (FFPE) samples of 22 metastatic or advanced RCC cases with known responses on next-line sorafenib monotherapy. Among them, nine patients showed partial response (PR), three patients—stable disease (SD), and 10 patients—progressive disease (PD) according to Response Evaluation Criteria In Solid Tumors (RECIST) criteria. We then classified PR + SD patients as “responders” and PD patients as “poor responders”. We found that gene signature including eight sorafenib target genes was congruent with the drug response characteristics and enabled high-quality separation of the responders and poor responders [area under a receiver operating characteristic curve (AUC) 0.89]. We validated these findings on another set of 13 experimental annotated FFPE RCC samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by RNA sequencing and observed AUC 0.97 for 8-gene signature as the response classifier. We further validated these results in a series of qRT-PCR experiments on the third experimental set of 12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients), where 8-gene signature showed AUC 0.83.
Collapse
Affiliation(s)
- Alexander Gudkov
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Dmitriy Sokov
- Moscow City Clinical Oncological Dispensary №. 1, Moscow, Russia
| | | | | | | | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- OmicsWay Corp, Walnut, CA, United States
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maksim Sorokin
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
- OmicsWay Corp, Walnut, CA, United States
- European Organization for Research and Treatment of Cancer (EORTC), Biostatistics and Bioinformatics Subgroup, Brussels, Belgium
- *Correspondence: Maksim Sorokin,
| |
Collapse
|
22
|
Ipilimumab, Pembrolizumab, or Nivolumab in Combination with BBI608 in Patients with Advanced Cancers Treated at MD Anderson Cancer Center. Cancers (Basel) 2022; 14:cancers14051330. [PMID: 35267638 PMCID: PMC8909492 DOI: 10.3390/cancers14051330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Background: BBI608 is an investigational reactive oxygen species generator that affects several molecular pathways. We investigated BBI608 combined with immune checkpoint inhibitors in patients with advanced cancers. Methods: BBI608 (orally twice daily) was combined with ipilimumab (3 mg/kg IV every 3 weeks); pembrolizumab (2 mg/kg IV every 3 weeks); or nivolumab (3 mg/kg IV every 4 weeks). We assessed the safety, antitumor activity and the pharmacokinetic profile of BBI combined with immunotherapy. Results: From 1/2017 to 3/2017, 12 patients were treated (median age, 54 years; range, 31–78; 6 men). Treatment was overall well tolerated. No dose-limiting toxicity was observed. The most common adverse events were diarrhea (5 patients: grade (G)1–2, n = 3; G3, n = 2) and nausea (4 patients, all G1). Prolonged disease stabilization was noted in five patients treated with BBI608/nivolumab lasting for 12.1, 10.1, 8.0, 7.7 and 7.4 months. The median progression-free survival was 2.73 months. The median overall survival was 7.56 months. Four patients had prolonged overall survival (53.0, 48.7, 51.9 and 48.2 months). Conclusions: Checkpoint inhibitors combined with BBI608 were well tolerated. Several patients had prolonged disease stabilization and overall survival. Prospective studies to elucidate the mechanisms of response and resistance to BBI608 are warranted.
Collapse
|
23
|
Park Y, Kim MJ, Choi Y, Kim NH, Kim L, Hong SPD, Cho HG, Yu E, Chae YK. Role of mass spectrometry-based serum proteomics signatures in predicting clinical outcomes and toxicity in patients with cancer treated with immunotherapy. J Immunother Cancer 2022; 10:e003566. [PMID: 35347071 PMCID: PMC8961104 DOI: 10.1136/jitc-2021-003566] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
Immunotherapy has fundamentally changed the landscape of cancer treatment. However, only a subset of patients respond to immunotherapy, and a significant portion experience immune-related adverse events (irAEs). In addition, the predictive ability of current biomarkers such as programmed death-ligand 1 (PD-L1) remains unreliable and establishing better potential candidate markers is of great importance in selecting patients who would benefit from immunotherapy. Here, we focus on the role of serum-based proteomic tests in predicting the response and toxicity of immunotherapy. Serum proteomic signatures refer to unique patterns of proteins which are associated with immune response in patients with cancer. These protein signatures are derived from patient serum samples based on mass spectrometry and act as biomarkers to predict response to immunotherapy. Using machine learning algorithms, serum proteomic tests were developed through training data sets from advanced non-small cell lung cancer (Host Immune Classifier, Primary Immune Response) and malignant melanoma patients (PerspectIV test). The tests effectively stratified patients into groups with good and poor treatment outcomes independent of PD-L1 expression. Here, we review current evidence in the published literature on three liquid biopsy tests that use biomarkers derived from proteomics and machine learning for use in immuno-oncology. We discuss how these tests may inform patient prognosis as well as guide treatment decisions and predict irAE of immunotherapy. Thus, mass spectrometry-based serum proteomics signatures play an important role in predicting clinical outcomes and toxicity.
Collapse
Affiliation(s)
- Yeonggyeong Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Min Jeong Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yoonhee Choi
- Department of Internal Medicine, NewYork-Presbyterian Queens, Flushing, New York, USA
| | - Na Hyun Kim
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, Illinois, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital Evanston, Evanston, Illinois, USA
| | - Seung Pyo Daniel Hong
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hyung-Gyo Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emma Yu
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Young Kwang Chae
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
24
|
Xu SM, Shi CJ, Xia RH, Wang LZ, Tian Z, Ye WM, Liu L, Liu SL, Zhang CY, Hu YH, Zhou R, Han Y, Wang Y, Zhang ZY, Li J. Analysis of Immunological Characteristics and Genomic Alterations in HPV-Positive Oropharyngeal Squamous Cell Carcinoma Based on PD-L1 Expression. Front Immunol 2022; 12:798424. [PMID: 35145511 PMCID: PMC8821172 DOI: 10.3389/fimmu.2021.798424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) expression has been approved as an immune checkpoint inhibitor (ICI) response predictive biomarker; however, the clinicopathological and molecular features of HPV-positive oropharyngeal squamous cell carcinoma [HPV(+)OPSCC] based on PD-L1 expression are not well studied. We aimed to characterize clinicopathological, tumor immune microenvironmental, and molecular features of HPV(+)OPSCC with different PD-L1 expression scored by combined positive score (CPS). A total of 112 cases were collected from 2008-2021 and received PD-L1 and CD8 immunohistochemistry (IHC) staining. 71 samples received DNA sequencing out of which 32 samples received RNA sequencing for immune-related gene alterations or expression analysis. The 32 samples were also subjected to analysis of CD20, CD4, CD8, CD68, Foxp3 and P16 by multiplex immunofluorescence (mIF) staining, and the immune markers were evaluated in the tumor body (TB), tumor margin (TM) and normal stroma (NS) regions separately. Our results showed that of 112 HPV(+)OPSCC tumors, high(CPS≥20), intermediate(1≤CPS<20), and low(CPS<1) PD-L1 expression was seen in 29.5%, 43.8% and 26.8% cases respectively. Non-smoking patients and patients with tumors occurring at the tonsils or having rich lymphocytes infiltration had significantly higher PD-L1 expression. Patients with CPS≥20 had significantly higher tumor mutation burden (TMB, p=0.0058), and PD-L1 expression correlated significantly with CD8+ T cells infiltration, which were ample in tumor regions than in NS in mIF. CD20+, CD4+, CD68+, Foxp3+CD4+ cells were demonstrated to infiltrate higher in TM while CD20+ and CD68+ cells were also enriched in NS and TB regions respectively. However, none of them showed correlations with PD-L1 expression. ARID1A, STK11 alterations were enriched in the low PD-L1 group significantly, while anti-viral immune associated APOBEC mutation signature and immune-related genes expression such as XCL1 and IL11 were positively associated with PD-L1 expression (p<0.05). This is a comprehensive investigation revealing immune and molecular features of HPV(+)OPSCC based on PD-L1 expression. Our study suggested that 73.2% of HPV(+)OPSCC patients may benefit from immunotherapy, and high PD-L1 expression reflects immune-active status of HPV(+)OPSCC accompanied by higher immune effect factors such as TMB, CD8+ cytotoxic T cells and immune-related genomic alterations. Our study offers valuable information for understanding the immune features of HPV(+)OPSCC.
Collapse
Affiliation(s)
- Sheng-ming Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao-ji Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Rong-hui Xia
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-zhen Wang
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tian
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-min Ye
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Liu Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shu-li Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chun-ye Zhang
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-hua Hu
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu Wang
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-yuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Jiang Li, ; Zhi-yuan Zhang,
| | - Jiang Li
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jiang Li, ; Zhi-yuan Zhang,
| |
Collapse
|
25
|
Matsubayashi H, Higashigawa S, Kiyozumi Y, Oishi T, Sasaki K, Ishiwatari H, Imai K, Hotta K, Yabuuchi Y, Ishikawa K, Satoh T, Ono H, Todaka A, Kawakami T, Shirasu H, Yasui H, Sugiura T, Uesaka K, Kagawa H, Shiomi A, Kado N, Hirashima Y, Kiyohara Y, Bando E, Niwakawa M, Nishimura S, Aramaki T, Mamesaya N, Kenmotsu H, Horiuchi Y, Serizawa M. Microsatellite instability is biased in Amsterdam II-defined Lynch-related cancer cases with family history but is rare in other cancers: a summary of 1000 analyses. BMC Cancer 2022; 22:73. [PMID: 35039004 PMCID: PMC8762879 DOI: 10.1186/s12885-022-09172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Microsatellite instability (MSI) is a key marker for predicting the response of immune checkpoint inhibitors (ICIs) and for screening Lynch syndrome (LS). Aim This study aimed to see the characteristics of cancers with high level of MSI (MSI-H) in genetic medicine and precision medicine. Methods This study analyzed the incidence of MSI-H in 1000 cancers and compared according to several clinical and demographic factors. Results The incidence of MSI-H was highest in endometrial cancers (26.7%, 20/75), followed by small intestine (20%, 3/15) and colorectal cancers (CRCs)(13.7%, 64/466); the sum of these three cancers (15.6%) was significantly higher than that of other types (2.5%)(P < 0.0001). MSI-H was associated with LS-related cancers (P < 0.0001), younger age (P = 0.009), and family history, but not with smoking, drinking, or serum hepatitis virus markers. In CRC cases, MSI-H was significantly associated with a family history of LS-related cancer (P < 0.0001), Amsterdam II criteria [odds ratio (OR): 5.96], right side CRCs (OR: 4.89), and multiplicity (OR: 3.31). However, MSI-H was very rare in pancreatic (0.6%, 1/162) and biliary cancers (1.6%, 1/64) and was null in 25 familial pancreatic cancers. MSI-H was more recognized in cancers analyzed for genetic counseling (33.3%) than in those for ICI companion diagnostics (3.1%)(P < 0.0001). Even in CRCs, MSI-H was limited to 3.3% when analyzed for drug use. Conclusions MSI-H was predominantly recognized in LS-related cancer cases with specific family histories and younger age. MSI-H was limited to a small proportion in precision medicine especially for non-LS-related cancer cases.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka, Japan. .,Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan.
| | | | | | | | | | - Hirotoshi Ishiwatari
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Kenichiro Imai
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Kinichi Hotta
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Yohei Yabuuchi
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Kazuma Ishikawa
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Tatsunori Satoh
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Hiroyuki Ono
- Division of Endoscopy and Genetic Medicine Promotion, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan
| | - Akiko Todaka
- Division of Gastrointestinal Oncology, Shizuoka, Japan
| | | | | | | | - Teichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka, Japan
| | | | | | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka, Japan
| | - Nobuhiro Kado
- Division of Genetic Medicine Promotion, Shizuoka, Japan.,Division of Gynecology, Shizuoka, Japan
| | | | | | | | | | - Seiichiro Nishimura
- Division of Genetic Medicine Promotion, Shizuoka, Japan.,Division of Breast Surgery, Shizuoka, Japan
| | | | | | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka, Japan.,Division of Thoracic Oncology, Shizuoka, Japan
| | - Yasue Horiuchi
- Division of Genetic Medicine Promotion, Shizuoka, Japan.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakuni Serizawa
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
26
|
Pelosi G, Eng MB, Eng MV, Uccella S, Forest F, Leone G, Barberis M, Rahal D, Bossi P, Finzi G, Marchiori D, De Luca M, Sessa F, Harari S, Spinelli M, Viola P, Macrì P, Maria S, Rizzo A, Picone A, Pattini L. Coexpression of ΔNp63/p40 and TTF1 Within Most of the Same Individual Cells Identifies Life-Threatening NSCLC Featuring Squamous and Glandular Biphenotypic Differentiation: Clinicopathologic Correlations. JTO Clin Res Rep 2021; 2:100222. [PMID: 34746884 PMCID: PMC8551500 DOI: 10.1016/j.jtocrr.2021.100222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Double occurrence of TTF1 and ΔNp63/p40 (henceforth, p40) within the same individual cells is exceedingly rare in lung cancer. Little is known on their biological and clinical implications. Methods Two index cases immunoreactive for both p40 and TTF1 and nine tumors selected from The Cancer Genome Atlas (TCGA) according to the mRNA levels of the two relevant genes entered the study. Results The two index cases were peripherally located, poorly differentiated, and behaviorally unfavorable carcinomas, which shared widespread p40 and TTF1 decoration within the same individual tumor cells. They also retained SMARCA2 and SMARCA4 expression, while variably stained for p53, cytokeratin 5, and programmed death-ligand 1. A subset of basal cells p40+/TTF1+ could be found in normal distal airways. Biphenotypic glandular and squamous differentiation was unveiled by electron microscopy, along with EGFR, RAD51B, CCND3, or NF1 mutations and IGF1R, MYC, CCND1, or CDK2 copy number variations on next-generation sequencing analysis. The nine tumors from TCGA (0.88% of 1018 tumors) shared the same poor prognosis, clinical presentation, and challenging histology and had activated pathways of enhanced angiogenesis and epithelial-mesenchymal transition. Mutation and copy number variation profiles did not differ from the other TCGA tumors. Conclusions Double p40+/TTF1+ lung carcinomas are aggressive and likely underrecognized non-small cell carcinomas, whose origin could reside in double-positive distal airway stem-like basal cells through either de novo-basal-like or differentiating cell mechanisms according to a model of epithelial renewal.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) MultiMedica, Milan, Italy
| | - Matteo Bulloni Eng
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Martina Vescio Eng
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Silvia Uccella
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabien Forest
- Department of Pathology, University Hospital Center (CHU), North Hospital, Saint Etienne, France
| | - Giorgia Leone
- Pathology Service, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Massimo Barberis
- Histopathology and Molecular Diagnostics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) European Institute of Oncology, Milan, Italy
| | - Daoud Rahal
- Department of Pathology, Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Milan, Italy
| | - Paola Bossi
- Department of Pathology, Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Milan, Italy
| | - Giovanna Finzi
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Deborah Marchiori
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco De Luca
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Sergio Harari
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Division of Pneumology, San Giuseppe Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) MultiMedica, Milan, Italy
| | - Manuela Spinelli
- Cellular Pathology Department, Worcester Royal Hospital, Worcester, United Kingdom
| | - Patrizia Viola
- Cellular Pathology Department, Hammersmith Hospital, London, United Kingdom
| | - Paolo Macrì
- Division of Oncologic Thoracic Surgery, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Stefania Maria
- Division of Oncologic Thoracic Surgery, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Antonio Rizzo
- Pathology Service, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Antonio Picone
- Department of Oncology, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
27
|
Emens LA. Predictive Biomarkers: Progress on the Road to Personalized Cancer Immunotherapy. J Natl Cancer Inst 2021; 113:1601-1603. [PMID: 33823004 PMCID: PMC8634411 DOI: 10.1093/jnci/djab068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leisha A Emens
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Leisha A. Emens, MD, PhD, Department of Medicine, Director of Translational Immunotherapy for the Women’s Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Room 1.46e, Pittsburgh, PA 15213, USA (e-mail: )
| |
Collapse
|