1
|
Tebbi CK, Yan J, Sahakian E, Mediavilla-Varela M, Pinilla-Ibarz J, Patel S, Rottinghaus GE, Liu RY, Dennison C. Mycovirus-Containing Aspergillus flavus Alters Transcription Factors in Normal and Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2024; 25:10361. [PMID: 39408690 PMCID: PMC11476453 DOI: 10.3390/ijms251910361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Transcription factors control genes to maintain normal hemopoiesis, and dysregulation of some factors can lead to acute lymphoblastic leukemia (ALL). Mycoviruses are known to alter the genetics of their fungal host. The present study evaluates the effects of the products of a mycovirus-containing Aspergillus flavus (MCAF), isolated from the home of a patient with ALL, on certain transcription factors of normal and ALL cell lines. Our published studies have shown that ALL patients have antibodies to MCAF, and that exposure of the mononuclear leukocytes of patients in complete remission to its products, unlike controls, results in the re-development of genetic and cell surface phenotypes characteristic of ALL. For the present study, normal, pre-B, and B-cell leukemia cell lines were exposed to the culture of MCAF. Pre- and post-exposure levels of PAX5, Ikaros, and NF-κB were assessed. Exposure to MCAF resulted in apoptosis, cell cycle changes, and complete downregulation of all transcription factors in normal cell lines. In acute leukemia cell lines, cellular apoptosis and alterations in the cell cycle were also noted; however, while there was downregulation of all tested transcription factors, residual levels were retained. The noted alterations in the transcription factors caused by MCAF are novel findings. The possible role of MCAF in leukemogenesis needs to be further investigated. Mycovirus-containing Aspergillus flavus was initially isolated from a leukemia patient's home. Our prior published studies have illuminated intriguing associations of this organism with leukemia. Unlike controls, patients diagnosed with acute lymphoblastic leukemia (ALL) harbor antibodies to this organism. Furthermore, the exposure of mononuclear cells from patients with ALL in complete remission to the products of this organism reproduced genetic and cell phenotypes characteristic of ALL. These findings underscore the potential role of environmental factors in leukemogenesis and hint at novel avenues for therapeutic intervention and preventive strategies.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (M.M.-V.); (J.P.-I.)
| | | | | | | | | | - Rachel Y. Liu
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Clare Dennison
- Diagnostic Laboratories, College of Veterinary Medicine, University of South Florida, Tampa, FL 33620, USA;
| |
Collapse
|
2
|
Moeckel C, Mouratidis I, Chantzi N, Uzun Y, Georgakopoulos-Soares I. Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights. Bioessays 2024; 46:e2300210. [PMID: 38715516 PMCID: PMC11444527 DOI: 10.1002/bies.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored. Lastly, the potential of machine learning and artificial intelligence to unravel cis-regulatory logic is analyzed. These computational advances have far-reaching implications for precision medicine, therapeutic target discovery, and the study of genetic variations in health and disease.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Ragnarsson C, Yang M, Moura-Castro LH, Aydın E, Gunnarsson R, Olsson-Arvidsson L, Lilljebjörn H, Fioretos T, Duployez N, Zaliova M, Zuna J, Castor A, Johansson B, Paulsson K. Constitutional and acquired genetic variants in ARID5B in pediatric B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23242. [PMID: 38738968 DOI: 10.1002/gcc.23242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Constitutional polymorphisms in ARID5B are associated with an increased risk of developing high hyperdiploid (HeH; 51-67 chromosomes) pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). Here, we investigated constitutional and somatic ARID5B variants in 1335 BCP ALL cases from five different cohorts, with a particular focus on HeH cases. In 353 HeH ALL that were heterozygous for risk alleles and trisomic for chromosome 10, where ARID5B is located, a significantly higher proportion of risk allele duplication was seen for the SNPs rs7090445 (p = 0.009), rs7089424 (p = 0.005), rs7073837 (p = 0.03), and rs10740055 (p = 0.04). Somatic ARID5B deletions were seen in 16/1335 cases (1.2%), being more common in HeH than in other genetic subtypes (2.2% vs. 0.4%; p = 0.002). The expression of ARID5B in HeH cases with genomic deletions was reduced, consistent with a functional role in leukemogenesis. Whole-genome sequencing and RNA-sequencing in HeH revealed additional somatic events involving ARID5B, resulting in a total frequency of 3.6% of HeH cases displaying a somatic ARID5B aberration. Overall, our results show that both constitutional and somatic events in ARID5B are involved in the leukemogenesis of pediatric BCP ALL, particularly in the HeH subtype.
Collapse
Affiliation(s)
- Charlotte Ragnarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Paediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Efe Aydın
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rebeqa Gunnarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Nicolas Duployez
- Laboratory of Haematology, Centre Hospitalier Universitaire (CHU) Lille, University of Lille, INSERM Unité 1277 Canther, Lille, France
| | - Marketa Zaliova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Anders Castor
- Department of Paediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yoshimura S, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. Nat Commun 2024; 15:3681. [PMID: 38693155 PMCID: PMC11063049 DOI: 10.1038/s41467-024-48124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert J Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kelly R Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Satoshi Yoshimura
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristine R Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher S Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mary V Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun J Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - William E Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
5
|
Chalise JP, Hu Z, Li M, Shepphird JK, Gu Z, Gyawali P, Itakura K, Larson GP. Identification of an alternative short ARID5B isoform associated with B-ALL survival. Biochem Biophys Res Commun 2024; 703:149659. [PMID: 38382358 DOI: 10.1016/j.bbrc.2024.149659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Utilizing RNA sequence (RNA-Seq) splice junction data from a cohort of 1841 B-cell acute lymphoblastic leukemia (B-ALL) patients we define transcriptionally distinct isoforms of ARID5B, a risk-associated gene identified in genome wide association studies (GWAS), which associate with disease survival. Short (S) and long (L) ARID5B transcripts, which differ in an encoded BAH-like chromatin interaction domain, show remarkable correlation to the isoform splicing pattern. Testing of the ARID5B proximal promoter of the S & L isoforms indicated that both are functionally independent in luciferase reporter assays. Increased short isoform expression is associated with decreased event-free and overall survival. The abundance of short and long transcripts strongly correlates to B-ALL prognostic stratification, where B-ALL subtypes with poor outcomes express a higher proportion of the S-isoform. These data demonstrate that the analysis of independent promoters and alternative splicing events are essential for improved risk stratification and a more complete understanding of disease pathology.
Collapse
Affiliation(s)
- Jaya P Chalise
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Min Li
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Jennifer K Shepphird
- Clinical Translational Project Development, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA; Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Purnima Gyawali
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Garrett P Larson
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
6
|
Prakash TC, Enkemann S. Current Progress on the Influence Human Genetics Has on the Efficacy of Tyrosine Kinase Inhibitors Used to Treat Chronic Myeloid Leukemia. Cureus 2024; 16:e56545. [PMID: 38646295 PMCID: PMC11027790 DOI: 10.7759/cureus.56545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) has become the mainstay of treatment in patients suffering from chronic myeloid leukemia (CML), an adult leukemia caused by a reciprocal translocation between chromosomes 9 and 22, which creates an oncogene resulting in a myeloproliferative neoplasm. These drugs function by inhibiting the ATP-binding site on the fusion oncoprotein and subsequently halting proliferative activity. The goal of this work is to investigate the current state of research into genetic factors that influence the efficacy of four FDA-approved TKIs used to treat CML. This overview attempts to identify genetic criteria that could be considered when choosing one drug over the others and to identify where more research is needed. Our results suggest that the usual liver enzymes impacting patient response may not be a major factor affecting the efficacy of imatinib, nilotinib, and bosutinib, and yet, that is where most of the past research has focused. More research is warranted on the impact that human polymorphisms of the CYP enzymes have on dasatinib. The impact of polymorphisms in UGT1A1 should be investigated thoroughly in other TKIs, not only nilotinib. The role of influx and efflux transporters has been inconsistent thus far, possibly due to failures to account for the multiple proteins that can transport TKIs and the impact that tumors have on transporter expression. Because physicians cannot currently use a patient's genetic profile to better target their treatment with TKIs, it is critical that more research be conducted on auxiliary pathways or off-target binding effects to generate new leads for further study. Hopefully, new avenues of research will help explain treatment failures and improve patient outcomes.
Collapse
Affiliation(s)
- Tara C Prakash
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Steven Enkemann
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| |
Collapse
|
7
|
Assis AJB, Santana BLDO, Gualberto ACM, Pittella-Silva F. Therapeutic applications of CRISPR/Cas9 mediated targeted gene editing in acute lymphoblastic leukemia: current perspectives, future challenges, and clinical implications. Front Pharmacol 2023; 14:1322937. [PMID: 38130408 PMCID: PMC10733529 DOI: 10.3389/fphar.2023.1322937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
Collapse
Affiliation(s)
| | | | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Wright S, Zhao X, Rosikiewicz W, Mryncza S, Hyle J, Qi W, Liu Z, Yi S, Cheng Y, Xu B, Li C. Systematic characterization of the HOXA9 downstream targets in MLL-r leukemia by noncoding CRISPR screens. Nat Commun 2023; 14:7464. [PMID: 38016946 PMCID: PMC10684515 DOI: 10.1038/s41467-023-43264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.
Collapse
Affiliation(s)
- Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xujie Zhao
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shelby Mryncza
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhenling Liu
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Siqi Yi
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
10
|
Chalise JP, Ehsani A, Lemecha M, Hung YW, Zhang G, Larson GP, Itakura K. ARID5B regulates fatty acid metabolism and proliferation at the Pre-B cell stage during B cell development. Front Immunol 2023; 14:1170475. [PMID: 37483604 PMCID: PMC10360657 DOI: 10.3389/fimmu.2023.1170475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
During B cell development in bone marrow, large precursor B cells (large Pre-B cells) proliferate rapidly, exit the cell cycle, and differentiate into non-proliferative (quiescent) small Pre-B cells. Dysregulation of this process may result in the failure to produce functional B cells and pose a risk of leukemic transformation. Here, we report that AT rich interacting domain 5B (ARID5B), a B cell acute lymphoblastic leukemia (B-ALL) risk gene, regulates B cell development at the Pre-B stage. In both mice and humans, we observed a significant upregulation of ARID5B expression that initiates at the Pre-B stage and is maintained throughout later stages of B cell development. In mice, deletion of Arid5b in vivo and ex vivo exhibited a significant reduction in the proportion of immature B cells but an increase in large and small Pre-B cells. Arid5b inhibition ex vivo also led to an increase in proliferation of both Pre-B cell populations. Metabolic studies in mouse and human bone marrow revealed that fatty acid uptake peaked in proliferative B cells then decreased during non-proliferative stages. We showed that Arid5b ablation enhanced fatty acid uptake and oxidation in Pre-B cells. Furthermore, decreased ARID5B expression was observed in tumor cells from B-ALL patients when compared to B cells from non-leukemic individuals. In B-ALL patients, ARID5B expression below the median was associated with decreased survival particularly in subtypes originating from Pre-B cells. Collectively, our data indicated that Arid5b regulates fatty acid metabolism and proliferation of Pre-B cells in mice, and reduced expression of ARID5B in humans is a risk factor for B cell leukemia.
Collapse
Affiliation(s)
- Jaya Prakash Chalise
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Ali Ehsani
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Mengistu Lemecha
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Yu-Wen Hung
- Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Guoxiang Zhang
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Garrett P. Larson
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
11
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Functional investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.10.23285762. [PMID: 36798219 PMCID: PMC9934807 DOI: 10.1101/2023.02.10.23285762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel C. Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Baranda S. Hansen
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan D. Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Christopher S. Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mary V. Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
12
|
Goodings C, Zhao X, McKinney-Freeman S, Zhang H, Yang JJ. ARID5B influences B-cell development and function in mouse. Haematologica 2022; 108:502-512. [PMID: 35924577 PMCID: PMC9890020 DOI: 10.3324/haematol.2022.281157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 02/03/2023] Open
Abstract
There is growing evidence for an inherited basis of susceptibility to childhood acute lymphoblastic leukemia. Genomewide association studies by us and others have identified non-coding acute lymphoblastic leukemia risk variants at the ARID5B gene locus, but the molecular mechanisms linking ARID5B to normal and malignant hematopoiesis remain largely unknown. Using a Vav1-driven transgenic mouse model, we characterized the role of Arid5b in hematopoiesis in vivo. Arid5b overexpression resulted in a dramatic reduction in the proportion of circulating B cells, immature, and mature Bcell fractions in the peripheral blood and the bone marrow, and also a decrease of follicular B cells in the spleen. There were significant defects in B-cell activation upon Arid5b overexpression in vitro with hyperactivation of B-cell receptor signaling at baseline. In addition, increased mitochondrial oxygen consumption rate of naïve or stimulated B cells of Arid5b-overexpressing mice was observed, compared to the rate of wild-type counterparts. Taken together, our results indicate that ARID5B may play an important role in B-cell development and function.
Collapse
Affiliation(s)
- Charnise Goodings
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA,*CG and XZ contributed equally as co-first authors
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA,*CG and XZ contributed equally as co-first authors
| | | | - Hui Zhang
- Department of Hematology/Oncology, Shanghai Children’s Medical Center, Shanghai, China
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA,Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA,J. J. Yang
| |
Collapse
|