1
|
Liang X, Li Z, Zhang L, Wang D, Tian J. Application of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Different Molecular Subtypes of Breast Cancer. ULTRASONIC IMAGING 2020; 42:261-270. [PMID: 33019918 DOI: 10.1177/0161734620959780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To explore the value of contrast-enhanced ultrasound (CEUS) in the differential diagnosis of molecular subtypes of breast cancer. Sixty-two cases of breast cancer were divided into luminal epithelium A or B subtype (luminal A/B), Her-2 over-expression subtype and triple negative subtype (TN). CEUS and routine ultrasonography were performed for all patients before surgery. (1) The luminal epithelium subtype contrast enhancement pattern was more likely to present with radial edge (76.92%, p < 0.05) and low perfusion (69.23%, p < 0.05). The maximum intensity (IMAX) was lower in the luminal epithelium subtype (p < 0.05). (2) The Her-2 over-expression subtype contrast enhancement pattern was more likely to present with centripetal enhancement (93.75%, p < 0.05) and perfusion defect (75.0%, p < 0.05), and the time to peak (TTP) was shorter (80.0%, p < 0.05). (3) The contrast enhancement pattern of the triple negative subtype was shown to have a clear boundary. Compared to the other two subtypes, the triple negative subtype did not have significantly different perfusion parameters (p > 0.05). (4) Our study showed that the areas under the ROC curve for radial edge, low perfusion and IMAX for the luminal epithelium subtype breast lesions were 76.5%, 75.6%, and 82.1%, respectively. Additionally, the areas under the ROC curve for centripetal enhancement, perfusion defect and TTP for the Her-2 over-expression subtype breast lesions were 68.6%, 92.4%, and 97.8%, respectively. The sensitivity, specificity, and diagnostic accuracy of clear boundaries in detecting triple negative subtype breast lesions were 90.5%, 80.0%, and 91.9%, respectively.
Collapse
Affiliation(s)
- Xingyu Liang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyao Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongmo Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
M. Sieuwerts A, A. Inda M, Smid M, van Ooijen H, van de Stolpe A, Martens JWM, Verhaegh WFJ. ER and PI3K Pathway Activity in Primary ER Positive Breast Cancer Is Associated with Progression-Free Survival of Metastatic Patients under First-Line Tamoxifen. Cancers (Basel) 2020; 12:E802. [PMID: 32230714 PMCID: PMC7226576 DOI: 10.3390/cancers12040802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
: Estrogen receptor positive (ER+) breast cancer patients are eligible for hormonal treatment, but only around half respond. A test with higher specificity for prediction of endocrine therapy response is needed to avoid hormonal overtreatment and to enable selection of alternative treatments. A novel testing method was reported before that enables measurement of functional signal transduction pathway activity in individual cancer tissue samples, using mRNA levels of target genes of the respective pathway-specific transcription factor. Using this method, 130 primary breast cancer samples were analyzed from non-metastatic ER+ patients, treated with surgery without adjuvant hormonal therapy, who subsequently developed metastatic disease that was treated with first-line tamoxifen. Quantitative activity levels were measured of androgen and estrogen receptor (AR and ER), PI3K-FOXO, Hedgehog (HH), NFκB, TGFβ, and Wnt pathways. Based on samples with known pathway activity, thresholds were set to distinguish low from high activity. Subsequently, pathway activity levels were correlated with the tamoxifen treatment response and progression-free survival. High ER pathway activity was measured in 41% of the primary tumors and was associated with longer time to progression (PFS) of metastases during first-line tamoxifen treatment. In contrast, high PI3K, HH, and androgen receptor pathway activity was associated with shorter PFS, and high PI3K and TGFβ pathway activity with worse treatment response. Potential clinical utility of assessment of ER pathway activity lies in predicting response to hormonal therapy, while activity of PI3K, HH, TGFβ, and AR pathways may indicate failure to respond, but also opens new avenues for alternative or complementary targeted treatments.
Collapse
Affiliation(s)
- Anieta M. Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Márcia A. Inda
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Henk van Ooijen
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Anja van de Stolpe
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim F. J. Verhaegh
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
3
|
Mei Y, Cai D, Dai X. Modulating cancer stemness provides luminal a breast cancer cells with HER2 positive-like features. J Cancer 2020; 11:1162-1169. [PMID: 31956362 PMCID: PMC6959057 DOI: 10.7150/jca.37117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancers can be classified into luminal A, luminal B, HER2 positive and triple-negative subtypes, each with a distinct therapeutic response. Tumor stemness drives cancer malignancy that challenges cancer control. Understanding the revolutionary relationships driven by tumor stemness among breast cancer subtypes is fundamental to identifying feasible therapeutic modalities for each breast cancer subtype. Utilizing the endogenous tRNA-processing system, we established a multiplexing CRISPR/dCas9 system in breast cancer cells, and applied it to a four-gene panel controlling cell potency, i.e., OCT4, KLF, MYC, SOX2. The stable cell strain, OKMS#1 was obtained through concomitantly over-expressing these genes in luminal A breast cancer cells. OKMS#1 cells showed increased invasion, proliferation and cancer stemness, shared similar drug response pattern with HER2 positive cells, and exhibited altered MAPK and enhanced NFkB signaling. This study contributes in providing an efficient multiplexing CRISPR/dCas9 system that enriches our genetic modulation tool box, and suggests that HER2 positive cells are potential progenitors of luminal A cells and that these two breast cancer subtypes may share similar treatment strategies once rewired between the two states. Our results also implicate that triple negative breast cancer cells, though sharing similar cancer stemness with HER2 positive cells, represent a distinct type of disease and require unique treatment solutions.
Collapse
Affiliation(s)
- Yi Mei
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Dai D, Zhong Y, Wang Z, Yousafzai NA, Jin H, Wang X. The prognostic impact of age in different molecular subtypes of breast cancer: a population-based study. PeerJ 2019; 7:e7252. [PMID: 31309004 PMCID: PMC6612417 DOI: 10.7717/peerj.7252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background The aim of current study was to use competing risk model to calculate the potential differences that age played in the prognosis of different breast cancer subtypes. Methods The cohort was selected from Surveillance, Epidemiology, and End Results (SEER) program. The cumulative incidences of death (CID) was assessed for breast cancer caused deaths and other causes of mortality. The multivariate Cox proportional hazards regression model and the multivariate subdistribution hazard (SH) model were used to evaluate the prognostic value of age in different breast cancer subtypes. Results We involved 33,968 breast cancer patients into our cohort. We found older patients had worse overall survival (OS) than young patients in hormone receptor positive and human epidermal growth factor receptor 2 positive breast cancer (HR+/HER2+) (≥40 vs. <40, HR = 2.07, 95% CI [1.28-3.35], p < 0.05). However, when we used competing risk model, we found young age was an independent risk factor only for triple negative breast cancer (TNBC) (≥40 vs. <40, HR = 0.71, 95% CI [0.56-0.89], p < 0.05). No association was found in other groups. Conclusion Our research was currently the largest sample size study and the first competing risk model-based study on the prognostic association between age and different breast cancer subtypes. We found <40 years patients had worse breast cancer specific survival (BCSS) than older patients in the TNBC subtype.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Zhong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Neelum Aziz Yousafzai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res 2017; 19:110. [PMID: 28974266 PMCID: PMC5627411 DOI: 10.1186/s13058-017-0900-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2) is amplified and a clinical target in a subset of human breast cancers with high rates of metastasis. Targeted therapies involving the antibody trastuzumab and trastuzumab-emtansine (T-DM1) have greatly improved outcomes for HER2-positive (HER2+) breast cancer patients. However, resistance to these targeted therapies can develop and limit their efficacy. Here, we test the involvement of the endocytic adaptor protein endophilin A2 (Endo II) in HER2+ breast cancer models, and their responses to treatments with trastuzumab and T-DM1. Methods Endo II expression in human breast tumors and lymph node metastases were analyzed by immunohistochemistry. Stable silencing of Endo II was achieved in HER2+ cancer cell lines (SK-BR-3 and HCC1954) to test Endo II effects on HER2 levels, localization and signaling, cell motility and tumor metastasis. The effects of Endo II silencing on the responses of HER2+ cancer cells to trastuzumab or T-DM1 treatments were tested using real-time cell motility and cytotoxicity assays. Results High Endo II protein expression was detected in HER2-positive tumors, and was linked to worse overall survival in node-positive HER2+ breast cancers at the mRNA level. Stable silencing of Endo II in HER2+ cell lines led to elevated levels of HER2 on the cell surface, impaired epidermal growth factor-induced HER2 internalization, and reduced signaling to downstream effector kinases Akt and Erk. Endo II silencing also led to decreased migration and invasion of HER2+ cancer cells in vitro, and impaired lung seeding following tail vein injection in mice. In addition, Endo II silencing also impaired HER2 internalization in response to Trastuzumab, and led to reduced cytotoxicity response in HER2+ cancer cells treated with T-DM1. Conclusions Our study provides novel evidence of Endo II function in HER2+ cancer cell motility and trafficking of HER2 that relates to effective treatments with trastuzumab or T-DM1. Thus, differential expression of Endo II may relate to sensitivity or resistance to trastuzumab-based therapies for HER2+ cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0900-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomas Baldassarre
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada. .,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Pareja F, Marchiò C, Geyer FC, Weigelt B, Reis-Filho JS. Breast Cancer Heterogeneity: Roles in Tumorigenesis and Therapeutic Implications. CURRENT BREAST CANCER REPORTS 2017. [DOI: 10.1007/s12609-017-0233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|