1
|
Ogura Y, Shimauchi T, Sugiyama T, Sugimura Y, Nakagawa M, Osawa H, Kojima R, Iwaizumi M, Honda T. A spectrum of BAP1 expression from naevus to melanoma in a patient with BAP1 tumour predisposition syndrome. Clin Exp Dermatol 2025; 50:1236-1238. [PMID: 39862231 DOI: 10.1093/ced/llaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
BAP1 tumour predisposition syndrome (BAP1-TPDS) is a rare autosomal dominant disorder characterized by germline loss-of-function mutations in the BAP1 tumour suppressor gene, and patients with BAP1-TPDS are at an increased risk of developing various tumours, including melanoma. We report a case of melanoma on the scalp in a patient with BAP1-TPDS. Based on the BAP1 expression pattern and cell morphology, we identified four distinct melanocytic populations within the lesion. We believe these findings provide us with important clues to understand the developmental mechanism of melanoma arising from naevi following a BAP1 mutation.
Collapse
Affiliation(s)
- Yasuaki Ogura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takatoshi Shimauchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoko Sugiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Sugimura
- Department of Plastic and Reconstructive Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Nakagawa
- Department of Plastic and Reconstructive Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Harumo Osawa
- Clinical & Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Risa Kojima
- Clinical & Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Moriya Iwaizumi
- Clinical & Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Terai M, Seedor R, Ashraf U, Hubbard G, Koshkin S, Orloff M, Sato T. Short Report: The Variants in CHEK2 in Metastatic Uveal Melanoma. J Clin Med 2025; 14:2815. [PMID: 40283643 PMCID: PMC12028195 DOI: 10.3390/jcm14082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Uveal melanoma (UM) is a rare subtype of melanoma with distinct clinical and molecular features compared to other melanoma subtypes. UM tumors are frequently detected with mutations in GNA11, GNAQ, EIF1AX, BAP1, and SF3B1 instead of the typical mutations associated with cutaneous melanoma. Although hereditary UM is rare, germline BAP1 loss predisposes patients to UM and various other cancers. The CHEK2 (Checkpoint kinase 2) gene that encodes the protein CHK2, a serine-threonine kinase, is a cell cycle checkpoint regulator that acts as a tumor suppressor. CHK2 is involved in DNA repair, cell cycle arrest, or apoptosis in response to DNA damage. CHEK2 mutations have been linked to various cancers. While there is no strong evidence that CHEK2 mutations increase the risk of melanoma, two cases of germline CHEK2 mutations in UM patients have been reported. However, the incidence of CHEK2 variants in metastatic UM (MUM) has not been investigated. Thus, we conducted a retrospective analysis of patients with MUM and CHEK2 variants to understand this link better. Methods: We collected MUM cases from 2016 to 2024 from institutional databases. Tissues underwent analyses of molecular and genomic features, including tumor mutational burden, and were performed by a Clinically Certified Laboratory. Next-generation sequencing and variant calling were conducted to identify CHEK2 variants. Results: In this study, we reported ten patients with CHEK2 variants among 740 metastatic UM patients (1.4%) and four primary UM patients with CHEK2 germline mutations. Conclusions: Although rare, UM patients with an abnormal ATM-CHEK2 axis might receive clinical benefits from medications that target DNA repair mechanisms.
Collapse
Affiliation(s)
- Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.S.); (S.K.); (M.O.); (T.S.)
| | - Rino Seedor
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.S.); (S.K.); (M.O.); (T.S.)
| | - Usman Ashraf
- Caris Life Sciences, Irving, TX 75039, USA; (U.A.); (G.H.)
| | | | - Sergei Koshkin
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.S.); (S.K.); (M.O.); (T.S.)
| | - Marlana Orloff
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.S.); (S.K.); (M.O.); (T.S.)
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.S.); (S.K.); (M.O.); (T.S.)
| |
Collapse
|
3
|
Shi Y, Lei C, Jiang H, Hong Y, Su W, Wu S, Yang X. BAX as a Biomarker for Predicting Immunotherapeutic Efficacy in Uveal Melanoma Patients: A Comprehensive Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01395-8. [PMID: 40180694 DOI: 10.1007/s12033-025-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/30/2025] [Indexed: 04/05/2025]
Abstract
Uveal melanoma (UVM) is the second most common type of malignant melanoma occurring in the eye, which arises from the interstitial melanocytes in the uveal tract. This study aims to identify a highly efficient biomarker for the immunotherapy against UVM. Initially, a comprehensive analysis was conducted using the transcriptional and clinical data from The Cancer Genome Atlas (TCGA) database through the immune and stromal scores to assess the composition of infiltrating immune cells in the tumor microenvironment. Further, the expression of BCL2-Associated X, Apoptosis Regulator (BAX), and its co-expression gene networks were analyzed using the weighted gene co-expression network analysis (WGCNA) to identify relevant gene modules and hub genes. The immunohistochemistry (IHC) analysis was carried out to confirm the influence of BAX on immune infiltration. In addition, the survival analysis on the hub genes, including BAX, was performed using an external dataset from the Gene Expression Omnibus (GEO) to corroborate the prognostic significance of these genes in an independent patient cohort. A nomogram integrating patients' clinical features was developed to predict the survival outcomes. Our investigations revealed that high BAX expression was associated with severe clinical characteristics and poor prognosis in UVM. Our analyses identified 12 hub genes at the intersection of differentially expressed genes categorized by BAX expression levels and a co-expression gene model. Further, the GEO database validated the prognostic significance of these hub genes. The IHC analysis established a significant correlation between BAX expression and immune infiltration. This nomogram model demonstrated robust predictive efficiency with a concordance index (C-index) of 0.909 (95% CI: 0.846-0.971), indicating excellent discriminative ability. The calibration curves for 1-year, 3-year, and 5-year overall survival (OS) rates confirmed the nomogram's accuracy, closely reflecting the actual patient outcomes. Finally, the Decision Curve Analysis (DCA) revealed that this nomogram could accurately predict OS for a majority of patients, covering a probability range of 25-95%. Our research may provide a new therapeutic regimen to benefit the UVM patients.
Collapse
Affiliation(s)
- Yao Shi
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Changjiang Lei
- Department of Oncology, The Fifth Hospital of Wuhan, Hubei, 430050, China
| | - Hong Jiang
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yan Hong
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wei Su
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shanxia Wu
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaobo Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, WuhanHubei, 430022, China.
| |
Collapse
|
4
|
Elsayed AM, Kittaneh M, Cebulla CM, Abdel-Rahman MH. An overview of BAP1 biological functions and current therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189267. [PMID: 39842618 DOI: 10.1016/j.bbcan.2025.189267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss-of-function variants in BAP1 are associated with a tumor predisposition syndrome with at least four cancers: uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Emerging evidence substantiates the fundamental role of BAP1 in suppressing cancer initiation and progression by tuning DNA damage repair, apoptosis, ferroptosis, immune response, Warburg phenomenon, and metastasis. Multiple treatment strategies such as poly (ADP-ribose) polymerase (PARP) inhibitors, EZH2 inhibitors, alkylating agents, and immunotherapy have been used as potential therapies for BAP1-mutated tumors. Although these agents showed promising results in BAP1-mutated tumors in preclinical studies, the results of most clinical trials are still dismal. The objectives of this review are to summarize the current state of knowledge regarding the biological functions of BAP1, the implications of these functions in tumorigenesis, and the current progress in BAP1-targeted therapy.
Collapse
Affiliation(s)
- Abdelrahman M Elsayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Muaiad Kittaneh
- Department of Oncology, Loyola University Chicago, Maywood, IL 60660, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Sargen MR, Barnhill RL, Elder DE, Swetter SM, Prieto VG, Ko JS, Bahrami A, Gerami P, Karunamurthy A, Pappo AS, Schuchter LM, LeBoit PE, Yeh I, Kirkwood JM, Jen M, Dunkel IJ, Durham MM, Christison-Lagay ER, Austin MT, Aldrink JH, Mehrhoff C, Hawryluk EB, Chu EY, Busam KJ, Sondak V, Messina J, Puig S, Colebatch AJ, Coughlin CC, Berrebi KG, Laetsch TW, Mitchell SG, Seynnaeve B. Evaluation and Surgical Management of Pediatric Cutaneous Melanoma and Atypical Spitz and Non-Spitz Melanocytic Tumors (Melanocytomas): A Report From Children's Oncology Group. J Clin Oncol 2025; 43:1157-1167. [PMID: 39365959 PMCID: PMC11908957 DOI: 10.1200/jco.24.01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE The purpose of this study was to develop recommendations for the diagnostic evaluation and surgical management of cutaneous melanoma (CM) and atypical Spitz tumors (AST) and non-Spitz melanocytic tumors (melanocytomas) in pediatric (age 0-10 years) and adolescent (age 11-18 years) patients. METHODS A Children's Oncology Group-led panel with external, multidisciplinary CM specialists convened to develop recommendations on the basis of available data and expertise. RESULTS Thirty-three experts from multiple specialties (cutaneous/medical/surgical oncology, dermatology, and dermatopathology) established recommendations with supporting data from 87 peer-reviewed publications. RECOMMENDATIONS (1) Excisional biopsies with 1-3 mm margins should be performed when feasible for clinically suspicious melanocytic neoplasms. (2) Definitive surgical treatment for CM, including wide local excision and sentinel lymph node biopsy (SLNB), should follow National Comprehensive Cancer Network Guidelines in the absence of data from pediatric-specific surgery trials and/or cohort studies. (3) Accurate classification of ASTs as benign or malignant is more likely with immunohistochemistry and next-generation sequencing. (4) It may not be possible to classify some ASTs as likely/definitively benign or malignant after clinicopathologic and/or molecular correlation, and these Spitz tumors of uncertain malignant potential should be excised with 5 mm margins. (5) ASTs favored to be benign should be excised with 1- to 3-mm margins if transected on biopsy. (6) Re-excision is not necessary if the AST does not extend to the biopsy margin(s) when complete/excisional biopsy was performed. (7) SLNB should not be performed for Spitz tumors unless a diagnosis of CM is favored on clinicopathologic evaluation. (8) Non-Spitz melanocytomas have a presumed increased risk for progression to CM and should be excised with 1- to 3-mm margins if transected on biopsy. (9) Re-excision of non-Spitz melanocytomas is not necessary if the lesion is completely excised on biopsy.
Collapse
Affiliation(s)
- Michael R Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Unit of Formation and Research of Medicine University of Paris Cité, Paris, France
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Susan M Swetter
- Department of Dermatology/Pigmented Lesion and Melanoma Program, Stanford University Medical Center and Cancer Institute, Stanford, CA
| | - Victor G Prieto
- Departments of Anatomic Pathology and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Ko
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pedram Gerami
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Lynn M Schuchter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Philip E LeBoit
- Departments of Dermatology and Pathology, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA
| | - John M Kirkwood
- University of Pittsburgh Medical Center Hillman Cancer Center Melanoma Program, Pittsburgh, PA
| | - Melinda Jen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Section of Pediatric Dermatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Megan M Durham
- Department of Surgery, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Emily R Christison-Lagay
- Division of Pediatric Surgery, Yale School of Medicine, Yale New-Haven Children's Hospital, New Haven, CT
| | - Mary T Austin
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Casey Mehrhoff
- Huntsman Cancer Institute, University of Utah Hospital, Salt Lake City, UT
| | - Elena B Hawryluk
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Dermatology Program, Department of Allergy and Immunology, Boston Children's Hospital, Boston, MA
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus J Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vernon Sondak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jane Messina
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew J Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO
| | - Kristen G Berrebi
- Departments of Dermatology and Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sarah G Mitchell
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - Brittani Seynnaeve
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
6
|
Valente P, Galardi A, Di Giannatale A, Romanzo A, Novelli A, Orlando V, Colletti M, Russo I, De Vito R, Iarossi G, Petroni S, Sinibaldi L, Buzzonetti L. Case report: Clinical and genetic features of pediatric choroidal melanoma. Front Med (Lausanne) 2025; 11:1480111. [PMID: 40151649 PMCID: PMC11949099 DOI: 10.3389/fmed.2024.1480111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 03/29/2025] Open
Abstract
Uveal melanoma (UM) is the second most common type of primary melanoma in adults, but it is extremely rare in children. We report a 12-year-old boy with a rare juvenile case of UM characterized by specific clinical and genetic features, including eye imaging and cytogenetic analysis. The tumor was analyzed using immunohistochemistry in order to confirm the clinical diagnosis and using next-generation sequencing (NGS) in order to investigate the correlation between pathological features and prognosis. The NGS revealed a somatic mutation in the GNAQ gene. Furthermore, we established a primary cell line (Opbg-UM1) to better understand the biology of this tumor in the pediatric setting. However, our case identified several factors predictive of poor prognosis, such as tumor proximity to the fovea and optic disc, large size, lack of pigmentation with mushroom configuration in category T2, and a complex karyotype showing numerical abnormalities on chromosome 6 and a mosaic loss of the Y chromosome in blood and in the primary cell line. This mutation may represent a poor prognostic factor in older children with UM.
Collapse
Affiliation(s)
- Paola Valente
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Orlando
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marta Colletti
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ida Russo
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Rita De Vito
- Laboratories, Pathology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giancarlo Iarossi
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Sergio Petroni
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Unit, Bambino Gesù IRCCS Pediatric Hospital, Rome, Italy
| | - Luca Buzzonetti
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
7
|
Kindler HL, Ismaila N, Bazhenova L, Chu Q, Churpek JE, Dagogo-Jack I, Bryan DS, Drazer MW, Forde P, Husain AN, Sauter JL, Rusch V, Bradbury PA, Cho BCJ, de Perrot M, Ghafoor A, Graham DL, Khorshid O, Lebensohn A, White J, Hassan R. Treatment of Pleural Mesothelioma: ASCO Guideline Update. J Clin Oncol 2025; 43:1006-1038. [PMID: 39778125 DOI: 10.1200/jco-24-02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE To provide evidence-based recommendations to practicing physicians and others on the management of pleural mesothelioma (PM). METHODS ASCO convened an Expert Panel of medical oncology, thoracic surgery, radiation oncology, pathology, cancer genetics, and advocacy experts to conduct an updated literature search, which included systematic reviews, meta-analyses, randomized controlled trials, and prospective and retrospective comparative observational studies published from 2016 through 2024. Outcomes of interest included survival, disease-free or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS The literature search identified 110 additional relevant studies to inform the evidence base for this guideline. RECOMMENDATIONS Evidence-based recommendations were developed for surgical cytoreduction, immunotherapy, chemotherapy, pathology, and germline testing in patients with PM.Additional information is available at www.asco.org/thoracic-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | - Quincy Chu
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Jane E Churpek
- University of Wisconsin-Madison and Carbone Cancer Center, Madison, WI
| | | | | | | | | | | | | | - Valerie Rusch
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - B C John Cho
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Azam Ghafoor
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | - Raffit Hassan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
8
|
Kato-Shinomiya M, Sugino H, Wang L, Saito Y, He J, Tanei ZI, Oda Y, Tanikawa S, Tanino M, Gong JP, Tsuda M, Tanaka S. SLC13A5 plays an essential role in the energy shift to oxidative phosphorylation in cisplatin-resistant mesothelioma stem cells. Pathol Int 2025; 75:151-165. [PMID: 39912507 DOI: 10.1111/pin.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Mesothelioma is a highly aggressive tumor affecting an increasing number of patients worldwide. Owing to the poor clinical outcomes associated with current therapies, the development of novel therapies that target cancer stem cells (CSCs) is desirable. Here, we examined the applicability of our previously established hydrogel-based rapid CSC generation method to human mesothelioma cell lines and further analyzed the characteristics of the induced mesothelioma stem cell (MesoSC) -like cells. Human mesothelioma cell lines cultured on hydrogels presented increased expression of pan-stem cell markers and acquired spheroid formation and early tumorigenicity, suggesting that MesoSC-like cells are highly malignant. Microarray analysis demonstrated that the expression of SLC13A5, a citrate transporter involved in TCA cycle, was significantly induced in the resulting MesoSC-like cells. The overexpression of SLC13A5 resulted in a metabolic shift toward oxidative phosphorylation, increased phosphorylation of ERK and YAP, and increased SOX2 expression, leading to increased cisplatin resistance. scRNA-seq database analysis revealed that clinical mesothelioma samples contained a small number of SLC13A5-expressing cells. Our findings suggest that the hydrogel-based CSC generation method is also effective for human mesothelioma cells and that SLC13A5 may contribute to MesoSC survival. The new properties of MesoSCs revealed in this study may provide clues for establishing future treatments.
Collapse
Affiliation(s)
- Marie Kato-Shinomiya
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirokazu Sugino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yusuke Saito
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Jintao He
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Mishie Tanino
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
9
|
Gupta S, Cheville JC. Renal Neoplasia: Rare Subtypes and Uncommon Clinical Presentations. Surg Pathol Clin 2025; 18:157-174. [PMID: 39890302 DOI: 10.1016/j.path.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Herein, the authors have discussed a series of uncommon familial kidney cancer syndromes (including hyperparathyroidism-jaw tumor syndrome and PTEN hamartoma tumor syndrome), sporadically occurring tumors (BRAF and MTOR pathway-mutated tumors, and juxtaglomerular cell tumors), and uncommon patterns of well-established subtypes of kidney cancer (mucinous tubular spindle cell carcinoma, fumarate hydratase-deficient, and TFE3-rearranged renal cell carcinoma). The rarity of these tumors often leads to diagnostic odysseys for pathologists and patients. Appropriate classification of these rare tumors has implications for screening at-risk family members in the case of hereditary tumor predisposition syndromes, accurate prognostication, and appropriate patient selection for clinical trials.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Godiveau M, Ginzac A, Bidet Y, Ponelle-Chachuat F, Privat M, Durando X, Cavaillé M, Lepage M. Identification of new candidate genes for the hereditary predisposition to uveal melanoma: IGCMU trial. Front Oncol 2025; 15:1538924. [PMID: 39926282 PMCID: PMC11802557 DOI: 10.3389/fonc.2025.1538924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Uveal melanoma (UM) is a rare ocular cancer. While germline mutations in genes such as BAP1 and MBD4 account for approximately 20% of familial UM cases, the hereditary factors underlying the remaining cases remain unknown. Epidemiological studies have suggested an increased risk of prostate cancer, thyroid cancer, and leukemia among patients with UM, indicating potential unidentified genetic predispositions. This study aims to identify new candidate genes associated with a hereditary predisposition to UM. Methods This single-center study, conducted at Centre Jean Perrin, will involve the exome sequencing of 50 patients with UM who do not harbor known pathogenic variants in the BAP1 or MBD4 genes. The primary objective is to identify novel candidate genes associated with hereditary cancer predisposition among UM patients. A several-step-bioinformatic analysis will be conducted to identify the genes of interest. A secondary objective is to explore genes known to be involved in predisposition to other cancers, already described in the occurrence of uveal melanoma, but where an association has not been fully established yet. The study has begun in October 2024, with patient recruitment lasting 12 months. No follow-up period is planned, but the duration of the genetic analyses is estimated at six months, with the final study report expected by October 2026. Discussion The identification of novel hereditary predisposition genes for UM could significantly enhance genetic counselling and surveillance strategies for families affected. This study could also contribute to a better understanding of the genetic landscape of UM, potentially leading to more personalized and effective options for its detection. Trial registration ClinicalTrials.gov, identifier NCT06550674, registered in August 2024. Protocol: version 1.0, January 18th, 2024.
Collapse
Affiliation(s)
- Mélanie Godiveau
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
| | - Angeline Ginzac
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
| | - Yannick Bidet
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Maud Privat
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Xavier Durando
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
- Département d’Oncologie Médicale, Center Jean Perrin, Clermont-Ferrand, France
| | - Mathias Cavaillé
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Mathis Lepage
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
11
|
Aoki Y, Arimura K, Hiroshima K, Sato Y, Kondo M, Tagaya E. CD276 as a critical independent biomarker and immune checkpoint inhibitor target in epithelioid mesothelioma-TCGA study. J Thorac Dis 2025; 17:109-120. [PMID: 39975728 PMCID: PMC11833596 DOI: 10.21037/jtd-24-1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/06/2024] [Indexed: 02/21/2025]
Abstract
Background CD276 is an immune checkpoint, and immune checkpoint inhibitors (ICIs) targeting CD276 have been tested against various cancers. However, the precise role of CD276 in mesothelioma subtypes is unknown. This study aimed to reveal the prognostic significance of CD276 in various cancers and explore CD276 as a target for ICIs in different mesothelioma subtypes. Methods We evaluated data from The Cancer Genome Atlas (TCGA) database retrospectively. The Wilcoxon rank-sum test was used to assess CD276 mRNA expression between cancer tissues and the adjacent normal tissues in the context of various cancers. The study involved 86 patients with mesothelioma. The mean number of patients was set as the cutoff value for comparing CD276 mRNA expression. The overall survival (OS) of patients with each mesothelioma subtype was estimated using the Kaplan-Meier method with CD276 mRNA expression. The factors affecting the correlation between OS and high/low CD276 expression in combination with/without a current existing molecular targets of programmed cell death 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and vascular endothelial growth factor A (VEGFA) were assessed using a multivariate Cox proportional hazards model. The correlation between the mRNA expression of CD276 and expression of gene markers of tumor-infiltrating immune cells and those of different pathways was evaluated using Spearman's correlation. The factors affecting correlations of CD276 mRNA expression were confirmed using a multivariate linear regression model. Results Upregulated CD276 mRNA expression was associated with a poor prognosis in various cancers, including epithelioid mesothelioma. The multivariate Cox proportional hazards model demonstrated that upregulated CD276 mRNA expression indicated the worst prognosis, including the combination of CD276 and PD-1, CTLA4, and VEGFA. In addition, using a multivariate linear regression model, CD276 mRNA expression was found to correlate with multiple glycolytic pathway mRNAs in epithelioid mesothelioma, especially PKM2. Conclusions CD276 is an independent prognostic biomarker in patients with epithelioid mesothelioma. It is associated with the glycolytic pathway and may contribute to ATP generation in epithelioid mesothelioma. CD276 inhibitors might contribute to better prognosis in patients with epithelioid mesothelioma.
Collapse
Affiliation(s)
- Yuko Aoki
- Tokyo Women’s Medical University, Tokyo, Japan
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women’s Medical University Yachiyo Medical Center, Chiba, Japan
| | - Yasuto Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Xu Y, Gru AA, Brenn T, Wiedemeyer K. BRCA1-associated-protein-1 inactivated melanocytic tumours: characterisation of the clinicopathological spectrum and immunohistochemical expression pattern of preferentially expressed antigen in melanoma. Histopathology 2025; 86:294-301. [PMID: 39268598 PMCID: PMC11649512 DOI: 10.1111/his.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
AIMS BRCA1-associaed protein-1 (BAP1) inactivated tumours (BIMT) are rare melanocytic tumours that may be mistaken for Spitz tumours or melanoma. They occur sporadically or in association with the BAP1 tumour predisposition syndrome (BAP1-TPDS), which may be complicated by uveal or cutaneous melanoma, mesothelioma, basal cell carcinoma and renal cell carcinoma. The aim of this study was to characterise the clinicopathological features and the immunohistochemical expression pattern of preferentially expressed antigen in melanoma (PRAME) of BIMT in a large patient cohort. METHODS AND RESULTS Ethical approval was obtained, haematoxylin and eosin-stained slides were reviewed, PRAME immunohistochemistry was performed and clinical follow-up was obtained from patient records. Sixty-five BIMT from 38 patients (F:M = 4.4:1) were identified. BIMT were typically located on the trunk and head and neck (median size = 0.5 cm). Seven patients with BAP1-TPDS (range = 16-66 years, median = 25) had multiple BIMT (median = 5), while sporadic BIMT were solitary (median patient age = 39 years). One of seven patients with BAP1-TPDS developed additional malignancies (mesothelioma and cutaneous spindle cell melanoma) and died of complications of mesothelioma. All other patients are alive without recurrence of BIMT (median follow-up = 42 months). BIMT presented as intradermal, nodular aggregates of epithelioid melanocytes with low mitotic activity and moderate to severe cytological atypia in 63% of cases. A background conventional naevus was present in 64%. PRAME immunohistochemistry showed negative or weakly patchy positive staining in all BIMT. CONCLUSIONS BIMT are more common in a sporadic setting and behave indolently, despite worrying cytological atypia. PRAME immunohistochemistry is a reassuring tool in distinguishing BIMT from melanoma.
Collapse
Affiliation(s)
- Yitong Xu
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
| | - Alejandro A Gru
- Department of PathologyUniversity of VirginiaCharlottesvilleVAUSA
- Department of PathologyNew York–Presbyterian Hospital/Columbia University Irving Medical CenterNew YorkUSA
| | - Thomas Brenn
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of CalgaryCalgaryABCanada
- Department of PathologyUniversity of MichiganAnn ArborMIUSA
| | - Katharina Wiedemeyer
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
- Department of PathologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
13
|
Johansson PA, Palmer JM, McGrath L, Warrier S, Hamilton HR, Beckman T, D'Mellow MG, Brooks KM, Glasson W, Hayward NK, Pritchard AL. Germline Variants in Patients Affected by Both Uveal and Cutaneous Melanoma. Pigment Cell Melanoma Res 2025; 38:e13199. [PMID: 39315505 DOI: 10.1111/pcmr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Uveal melanoma (UM) and nonacral cutaneous melanoma (CM) are distinct entities with varied genetic landscapes despite both arising from melanocytes. There are, however, similarities in that they most frequently affect people of European ancestry, and high penetrance germline variants in BAP1, POT1 and CDKN2A have been shown to predispose to both UM and CM. This study aims to further explore germline variants in patients affected by both UM and CM, shedding light on the underlying genetic mechanism causing these diseases. Using exome sequencing we analysed germline DNA samples from a cohort of 83 Australian patients diagnosed with both UM and CM. Eight (10%) patients were identified that carried pathogenic mutations in known melanoma predisposition genes POT1, MITF, OCA2, SLC45A2 and TYR. Three (4%) patients carried pathogenic variants in genes previously linked with other cancer syndromes (ATR, BRIP1 and MSH6) and another three cases carried monoallelic pathogenic variants in recessive cancer genes (xeroderma pigmentosum and Fanconi anaemia), indicating that reduced penetrance of phenotype in these individuals may contribute to the development of both UM and CM. These findings highlight the need for further studies characterising the role of these genes in melanoma susceptibility.
Collapse
Affiliation(s)
- Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lindsay McGrath
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, Queensland, Australia
| | - Sunil Warrier
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Timothy Beckman
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, Queensland, Australia
| | - Matthew G D'Mellow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - William Glasson
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, Queensland, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Genetics and Immunology, Division of Biomedical Science, University of the Highlands and Islands, Inverness, Scotland, UK
| |
Collapse
|
14
|
Lee CL, Saborowski A, Vogel A. Systemic approaches in biliary tract cancers: a review in the era of multidirectional precision medicine. Expert Opin Pharmacother 2024; 25:2385-2397. [PMID: 39560069 DOI: 10.1080/14656566.2024.2432488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Despite a rising incidence, biliary tract cancers (BTCs) are still considered a rare tumor entity. The disease's subtle clinical presentation and lack of effective early detection strategies often lead to a diagnosis at an advanced or unresectable stage, where curative options are limited. AREAS COVERED This review provides an overview of current systemic therapies and emerging novel approaches for BTC. For decades, the combination of gemcitabine with cisplatin (GemCis) has been the standard of care for palliative treatment. However, since 2020, the diagnostic and therapeutic landscape for BTC has evolved considerably, not only in the first-line setting but also beyond, driven by the development of clinical trials exploring immunotherapy and molecularly targeted agents. Due to the high frequency of targetable genetic alterations in BTC patients, there is a growing emphasis on obtaining tissue or liquid biopsy samples to identify markers like microsatellite instability and other actionable oncogenic driver genes. EXPERT OPINION Early initiation of systemic therapies in combination with multimodal approaches is essential for maximizing survival outcomes in patients with BTC.
Collapse
Affiliation(s)
- Cha Len Lee
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Ontario, Canada
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Ontario, Canada
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, University of Toronto, Ontario, Canada
| |
Collapse
|
15
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Sorrentino FS, Culiersi C, Florido A, De Nadai K, Adamo GG, Nasini F, Vivarelli C, Mura M, Parmeggiani F. Genetic Features of Uveal Melanoma. Genes (Basel) 2024; 15:1356. [PMID: 39596556 PMCID: PMC11593461 DOI: 10.3390/genes15111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Although it comprises only 5% of all melanomas, uveal melanoma (UM) is the most commonly observed primary intraocular cancer. METHODS Poor patient survival persists in spite of innovative systemic therapies. In fact, approximately fifty percent of UM patients develop metastases from micro-metastases that remain undetected at the exact time of diagnosis. RESULTS The molecular understanding of UM is significantly enhanced by the recent identification of several mutations that are responsible for the metastasis, growth, and survival of UM. The crucial point is a more accurate genetic analysis for patient follow-up and metastatic risk prediction. CONCLUSIONS This review provides a brief summary of the molecular features of UM that are recently discovered, as well as cytogenetic markers and biochemical pathways that are associated with the development of UM metastases.
Collapse
Affiliation(s)
- Francesco Saverio Sorrentino
- Unit of Ophthalmology, Department of Surgical Sciences, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.); (C.C.); (A.F.)
| | - Carola Culiersi
- Unit of Ophthalmology, Department of Surgical Sciences, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.); (C.C.); (A.F.)
| | - Antonio Florido
- Unit of Ophthalmology, Department of Surgical Sciences, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.); (C.C.); (A.F.)
| | - Katia De Nadai
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (K.D.N.); (G.G.A.); (C.V.); (M.M.)
- ERN-EYE Network—Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, 35100 Padova, Italy
| | - Ginevra Giovanna Adamo
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (K.D.N.); (G.G.A.); (C.V.); (M.M.)
- Unit of Ophthalmology, Azienda Ospedaliero Universitaria di Ferrara, 44100 Ferrara, Italy;
| | - Francesco Nasini
- Unit of Ophthalmology, Azienda Ospedaliero Universitaria di Ferrara, 44100 Ferrara, Italy;
| | - Chiara Vivarelli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (K.D.N.); (G.G.A.); (C.V.); (M.M.)
| | - Marco Mura
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (K.D.N.); (G.G.A.); (C.V.); (M.M.)
- King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia
| | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (K.D.N.); (G.G.A.); (C.V.); (M.M.)
- ERN-EYE Network—Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, 35100 Padova, Italy
| |
Collapse
|
17
|
Eide NA, Faber RT, Garred Ø, Sørum Falk R, Robsahm TE. Characterizations of uveal melanoma patients with three additional primary malignancies. Acta Ophthalmol 2024; 102:690-696. [PMID: 38229427 DOI: 10.1111/aos.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE In a population-based cohort of 960 uveal melanoma (UM) patients, we describe patients with three additional malignancies, including one unique patient with four synchronous primary malignancies. METHOD A descriptive presentation of the clinical course and outcome for UM patients with three additional primary malignancies. RESULTS After more than 20 years of follow-up of the UM cohort, 11 patients (1.1%) were diagnosed with three additional primary malignancies before, simultaneously or after UM. Among these, one patient had four synchronous primary malignancies, detected during workup for a symptomatic UM. All diagnoses were treated during the following 4 months, firstly the breast cancer, thereafter, the lung and pancreatic cancers and finally the UM. The patient died 3 years later of abdominal carcinomatosis due to the pancreatic cancer. The family history and gene testing did not disclose any genetic predisposition for cancer. A comparison of the four synchronous tumours, morphologically and immunohistochemically, showed no similarities and the expression of antibodies was different. CONCLUSION Patients with UM may be diagnosed with non-ocular additional primary cancers. Thus, a comprehensive workup is obligatory and a further follow-up of the UM patients seems necessary. The UM is not always the main problem.
Collapse
Affiliation(s)
- Nils Andreas Eide
- Department of Ophthalmology, Oslo University Hospital HF, Oslo, Norway
| | | | - Øystein Garred
- Department of Pathology, Oslo University Hospital HF, Oslo, Norway
| | - Ragnhild Sørum Falk
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital HF, Oslo, Norway
| | | |
Collapse
|
18
|
Zheng C, Sarin KY. Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance. Cancer Treat Res Commun 2024; 40:100837. [PMID: 39137473 DOI: 10.1016/j.ctarc.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
Collapse
Affiliation(s)
- Chenming Zheng
- Stanford University Department of Dermatology, Redwood City, CA, USA
| | - Kavita Y Sarin
- Stanford University Department of Dermatology, Redwood City, CA, USA.
| |
Collapse
|
19
|
Hassan A, Prabhakaran S, Pulford E, Hocking AJ, Godbolt D, Ziad F, Pandita A, Wessels A, Hussey M, Russell PA, Klebe S. The significance of BAP1 and MTAP/CDKN2A expression in well-differentiated papillary mesothelial tumour: a series of 21 cases and a review of the literature. Pathology 2024; 56:662-670. [PMID: 38789301 DOI: 10.1016/j.pathol.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
The nomenclature and diagnostic criteria of well-differentiated papillary mesothelial tumour (WDPMT) have been changed in the 2021 World Health Organization (WHO) classification of thoracic tumours, and a new entity, mesothelioma in situ (MIS), introduced. Histologically these two entities may be similar. However, MIS is regarded as a precursor to invasive mesothelioma and requires demonstration of loss of BAP1 and/or MTAP/CDKN2A for diagnosis, whereas performance of these ancillary tests is desirable but not essential for a diagnosis of WDPMT, in which the significance of BAP1 and/or MTAP/CDKN2A loss is not well understood or well defined. Against this backdrop, we undertook an investigation of 21 cases of WDPMT, identified from our case files and diagnosed according to 2021 WHO criteria, to explore the relationship between histology and BAP1 and MTAP/CDKN2A expression with clinical features including asbestos exposure, focality of tumours and clinical outcome. There were 18 women and three men, with ages ranging from 23-77 years (median 62 years), in which six had a history of asbestos exposure, two had no exposure, and in 13 exposure history was unavailable. Of 20 peritoneal tumours and one pleural tumour, 13 were detected incidentally at the time of surgery for unrelated conditions and eight peritoneal tumours were multifocal at the time of diagnosis. BAP1 immunohistochemistry (IHC) was performed in all 21 tumours, with nine tumours showing BAP1 expression loss. MTAP/CDKN2A testing was performed in 14 tumours, comprising MTAP IHC in 12 and CDKN2A fluorescence in situ hybridisation (FISH) in two, with three tumours showing MTAP/CDKN2A expression loss. Two tumours with MTAP/CDKN2A loss also showed BAP1 expression loss. Four patients progressed to invasive mesothelioma, including one male with a pleural tumour and asbestos exposure, and three females with multifocal peritoneal tumours, two with asbestos exposure and one without exposure. BAP1 expression loss was seen in all tumours from the four patients who progressed to invasive mesothelioma, whilst two of these tumours showed retained MTAP IHC and two were not tested. There was one patient with a tumour with MTAP loss and retained BAP1 who died from unrelated causes 5 months after diagnosis. Eight patients received WDPMT-specific treatment in addition to the initial excision. Survival for all patients ranged from 4-218 months, with one patient dying of mesothelioma at 49 months. Based on our results in this series of 21 patients with WDPMT diagnosed according to 2021 WHO criteria, we propose that WDPMT with BAP1 expression loss may best be regarded as papillary MIS and that a history of asbestos exposure and the presence of multifocal tumours in patients diagnosed with WDPMT should prompt ancillary testing with BAP1 IHC. Further we propose that BAP1 IHC should be essential in the diagnosis of WDPMT, with the diagnosis restricted to those tumours which show retained BAP1 expression. However more studies in larger cohorts of patients are needed to explore the relationship between BAP1 expression and MTAP loss in WDPMT, which will help to define this entity and separate it more clearly from MIS and invasive mesothelioma.
Collapse
Affiliation(s)
- Aniza Hassan
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Emily Pulford
- Department of Anatomical Pathology, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Ashleigh J Hocking
- Department of Anatomical Pathology, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - David Godbolt
- Pathology Queensland, Prince Charles Hospital, Brisbane, Qld, Australia
| | - Fouzia Ziad
- Department of Pathology, Waikato District Health Board, Hamilton, New Zealand
| | - Archana Pandita
- Department of Pathology, Waikato District Health Board, Hamilton, New Zealand
| | - Annesu Wessels
- Department of Anatomical Pathology, Te What Ora Te Tai Toker au, Whangarei Hospital, Northland, New Zealand
| | - Matthew Hussey
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Prudence A Russell
- LifeStrands Genomics and TissuPath Pathology, Mount Waverley, Vic, Australia
| | - Sonja Klebe
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia; Department of Anatomical Pathology, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia.
| |
Collapse
|
20
|
Lebensohn A, Ghafoor A, Bloomquist L, Royer MC, Castelo-Soccio L, Karacki K, Hathaway O, Maglo T, Wagner C, Agra MG, Blakely AM, Schrump DS, Hassan R, Cowen EW. Multiple Onychopapillomas and BAP1 Tumor Predisposition Syndrome. JAMA Dermatol 2024; 160:838-845. [PMID: 38759225 PMCID: PMC11102040 DOI: 10.1001/jamadermatol.2024.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Importance BRCA1-associated protein (BAP1) tumor predisposition syndrome (TPDS) is a cancer genodermatosis associated with high risk of uveal and cutaneous melanoma, basal cell carcinoma, and multiple internal malignant neoplasms, including mesothelioma and renal cell carcinoma. Early detection of the syndrome is important for cancer surveillance and genetic counseling of family members who are at risk. Objective To determine the prevalence of nail abnormalities in individuals with pathogenic germline variants in BAP1. Design, Setting, and Participants In this prospective cohort study, individuals who were known carriers of pathogenic BAP1 germline variants were consecutively enrolled between October 10, 2023, and March 15, 2024. Dermatologic evaluation for nail abnormalities was performed, including a history of nail abnormalities and associated symptoms, physical examination, medical photography, and nail biopsy for histopathology. This was a single-center study conducted at the National Institutes of Health Clinical Center. Main Outcomes and Measures Primary outcomes were the prevalence and spectrum of nail changes and histopathologic characterization. Results Among 47 participants (30 female [63.8%]; mean [SD] age, 46.4 [15.1] years) ranging in age from 13 to 72 years from 35 families, nail abnormalities were detected in 41 patients (87.2%) and included leukonychia, splinter hemorrhage, onychoschizia, and distal nail hyperkeratosis. Clinical findings consistent with onychopapilloma were detected in 39 patients (83.0%), including 35 of 40 individuals aged 30 years or older (87.5%). Nail bed biopsy was performed in 5 patients and was consistent with onychopapilloma. Polydactylous involvement with onychopapillomas was detected in nearly all patients who had nail involvement (38 of 39 patients [97.4%]). Conclusions and Relevance This study found that BAP1 TPDS was associated with a high rate of nail abnormalities consistent with onychopapillomas in adult carriers of the disease. Findings suggest that this novel cutaneous sign may facilitate detection of the syndrome in family members who are at risk and patients with cancers associated with BAP1 given that multiple onychopapillomas are uncommon in the general population and may be a distinct clue to the presence of a pathogenic germline variant in the BAP1 gene.
Collapse
Affiliation(s)
- Alexandra Lebensohn
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Azam Ghafoor
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Luke Bloomquist
- Department of Dermatology, Walter Reed National Military Medical Center
| | - Michael C. Royer
- Division of Dermatopathology, Joint Pathology Center, Silver Spring, Maryland
| | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kelli Karacki
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Olanda Hathaway
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tenin Maglo
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cathy Wagner
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria G. Agra
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew M. Blakely
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Waters AJ, Brendler-Spaeth T, Smith D, Offord V, Tan HK, Zhao Y, Obolenski S, Nielsen M, van Doorn R, Murphy JE, Gupta P, Rowlands CF, Hanson H, Delage E, Thomas M, Radford EJ, Gerety SS, Turnbull C, Perry JRB, Hurles ME, Adams DJ. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat Genet 2024; 56:1434-1445. [PMID: 38969833 PMCID: PMC11250367 DOI: 10.1038/s41588-024-01799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
Many variants that we inherit from our parents or acquire de novo or somatically are rare, limiting the precision with which we can associate them with disease. We performed exhaustive saturation genome editing (SGE) of BAP1, the disruption of which is linked to tumorigenesis and altered neurodevelopment. We experimentally characterized 18,108 unique variants, of which 6,196 were found to have abnormal functions, and then used these data to evaluate phenotypic associations in the UK Biobank. We also characterized variants in a large population-ascertained tumor collection, in cancer pedigrees and ClinVar, and explored the behavior of cancer-associated variants compared to that of variants linked to neurodevelopmental phenotypes. Our analyses demonstrated that disruptive germline BAP1 variants were significantly associated with higher circulating levels of the mitogen IGF-1, suggesting a possible pathological mechanism and therapeutic target. Furthermore, we built a variant classifier with >98% sensitivity and specificity and quantify evidence strengths to aid precision variant interpretation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajie Zhao
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Charlie F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen Hanson
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | | | - Elizabeth J Radford
- Wellcome Sanger Institute, Hinxton, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- National Cancer Registration and Analysis Service, NHS England, London, UK
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | | |
Collapse
|
22
|
de Esteban Maciñeira E, Fernández Fernández P, Conde González I, Bande Rodríguez MF, Blanco Teijeiro MJ. Multiple neoplasms in patients with uveal melanoma: a systematic review. Int Ophthalmol 2024; 44:256. [PMID: 38909111 DOI: 10.1007/s10792-024-03164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE Uveal melanoma is the most prevalent intraocular malignancy in adults, derived from uveal tract melanocytes. This study focuses on the frequency and risk of second primary malignancies in UM patients. METHODS A PubMed search (1980-2023) identified studies on SPM incidence in UM patients. From 191 references, 14 studies were chosen, focusing on UM, SPMs, and analysing data on demographics and types of neoplasms. RESULTS Among 31,235 UM patients in 14 studies, 4695 had 4730 SPMs (15.03% prevalence). Prostate (15%), breast (12%), and colorectal (9%) cancers were most common. Digestive system malignancies were highest (19%), with colorectal cancer leading (51%). Breast and prostate cancers were prevalent in respective systems. Lung, bladder, and non-Hodgkin's lymphoma were also notable. The study observed an increasing trend in the frequency of SPMs over time, reflecting broader trends in cancer survivorship and the growing prevalence of multiple malignancies. CONCLUSION The study highlights a significant presence of SPMs in UM patients, with an increasing trend in frequency over time, emphasizing prostate and breast cancers. This underscores the need for focused surveillance and tailored follow-up for UM survivors, considering their higher risk of additional malignancies. Future research should further investigate SPM aetiology in UM patients.
Collapse
Affiliation(s)
- Elia de Esteban Maciñeira
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramón Baltar S/N, 15706, Santiago de Compostela, Spain.
| | - Pablo Fernández Fernández
- Department of Surgery and Medical-Surgical Specialties, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Manuel Francisco Bande Rodríguez
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramón Baltar S/N, 15706, Santiago de Compostela, Spain
- Intraocular Tumors of the Adult, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María José Blanco Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramón Baltar S/N, 15706, Santiago de Compostela, Spain
- Intraocular Tumors of the Adult, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
23
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
24
|
West EC, Chiappetta M, Mattingly AA, Congedo MT, Evangelista J, Campanella A, Sassorossi C, Flamini S, Rossi T, Pistoni M, Abenavoli L, Margaritora S, Lococo F, Boccuto L. BRCA1-associated protein 1: Tumor predisposition syndrome and Kury-Isidor syndrome, from genotype-phenotype correlation to clinical management. Clin Genet 2024; 105:589-595. [PMID: 38506155 DOI: 10.1111/cge.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
The BAP1 tumor suppressor gene encodes a deubiquitinase enzyme involved in several cellular activities, including DNA repair and apoptosis. Germline pathogenic variants in BAP1 have been associated with heritable conditions including BAP1 tumor predisposition syndrome 1 (BAP1-TPDS1) and a neurodevelopmental disorder known as Kury-Isidor syndrome (KURIS). Both these conditions are caused by monoallelic, dominant alterations of BAP1 but have never been reported in the same subject or family, suggesting a mutually exclusive genotype-phenotype correlation. This distinction is extremely important considering the early onset and aggressive nature of the types of cancer reported in individuals with TPDS1. Genetic counseling in subjects with germline BAP1 variants is fundamental to predicting the effect of the variant and the expected phenotype, assessing the potential risk of developing cancer for the tested subject and the family members who may carry the same variant and providing the multidisciplinary clinical team with the proper information to establish precise surveillance and management protocols.
Collapse
Affiliation(s)
- Elizabeth Casey West
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, South Carolina, USA
| | - Marco Chiappetta
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Aubrey Anne Mattingly
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, South Carolina, USA
| | - Maria Teresa Congedo
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jessica Evangelista
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annalisa Campanella
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carolina Sassorossi
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Flamini
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Stefano Margaritora
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Lococo
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
25
|
Testa JR, Kadariya Y, Friedberg JS. Targeting inflammatory factors for chemoprevention and cancer interception to tackle malignant mesothelioma. Oncoscience 2024; 11:53-57. [PMID: 38784478 PMCID: PMC11115283 DOI: 10.18632/oncoscience.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mesothelioma is an incurable cancer of the mesothelial lining often caused by exposure to asbestos. Asbestos-induced inflammation is a significant contributing factor in the development of mesothelioma, and genetic factors also play a role in the susceptibility to this rapidly progressive and treatment-resistant malignancy. Consequently, novel approaches are urgently needed to treat mesothelioma and prevent or reduce the overall incidence of this fatal disease. In this research perspective, we review the current state of chemoprevention and cancer interception progress in asbestos-induced mesothelioma. We discuss the different preclinical mouse models used for these investigations and the inflammatory factors that may be potential targets for mesothelioma prevention. Preliminary studies with naturally occurring phytochemicals and synthetic agents are reviewed. Results of previous clinical chemoprevention trials in populations exposed to asbestos and considerations regarding future trials are also presented.
Collapse
Affiliation(s)
- Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Joseph S. Friedberg
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
26
|
Booth L, Roberts JL, Spasojevic I, Baker KC, Poklepovic A, West C, Kirkwood JM, Dent P. GZ17-6.02 kills PDX isolates of uveal melanoma. Oncotarget 2024; 15:328-344. [PMID: 38758815 PMCID: PMC11101052 DOI: 10.18632/oncotarget.28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ivan Spasojevic
- Department of Medicine, and PK/PD Core Laboratory, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn C Baker
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Hutchinson, KS 67502, USA
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Ando Y, Dbouk M, Yoshida T, Abou Diwan E, Saba H, Dbouk A, Yoshida K, Roberts NJ, Klein AP, Burkhart R, He J, Hruban RH, Goggins M. Germline Pathogenic Variants in Patients With Pancreatic and Periampullary Cancers. JCO Precis Oncol 2024; 8:e2400101. [PMID: 38781545 DOI: 10.1200/po.24.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Inherited cancer susceptibility is often not suspected in the absence of a significant cancer family history. Pathogenic germline variants in pancreatic cancer are well-studied, and routine genetic testing is recommended in the guidelines. However, data on rare periampullary cancers other than pancreatic cancer are insufficient. We compared the prevalence of germline susceptibility variants in patients with pancreatic cancer and nonpancreatic periampullary cancers. MATERIALS AND METHODS Six hundred and eight patients who had undergone pancreaticoduodenal resection at a tertiary referral hospital were studied, including 213 with pancreatic ductal adenocarcinoma, 172 with ampullary cancer, 154 with distal common bile duct cancer, and 69 with duodenal adenocarcinoma. Twenty cancer susceptibility and candidate susceptibility genes were sequenced, and variant interpretation was assessed by interrogating ClinVar and PubMed. RESULTS Pathogenic or likely pathogenic, moderate- to high-penetrant germline variants were identified in 46 patients (7.7%), including a similar percentage of patients with pancreatic (8.5%) and nonpancreatic periampullary cancer (7.1%). Low-penetrant variants were identified in an additional 11 patients (1.8%). Eighty-nine percent of the moderate- to high-penetrant variants involved the major cancer susceptibility genes BRCA2, ATM, BRCA1, CDKN2A, MSH2/MLH1, and PALB2; the remaining 11% involved other cancer susceptibility genes such as BRIP1, BAP1, and MSH6. Almost all pathogenic variant carriers had a family history of cancer. CONCLUSION Patients with pancreatic and nonpancreatic periampullary cancer have a similar prevalence of pathogenic cancer susceptibility variants. Germline susceptibility testing should be considered for patients with any periampullary cancer.
Collapse
Affiliation(s)
- Yohei Ando
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Mohamad Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Takeichi Yoshida
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Elizabeth Abou Diwan
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Helena Saba
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Ali Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Kanako Yoshida
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Nicholas J Roberts
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Alison P Klein
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- The Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Richard Burkhart
- Departments of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Jin He
- Departments of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Ralph H Hruban
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- The Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Michael Goggins
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
- Departments of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
28
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
29
|
Kadariya Y, Sementino E, Ruan M, Cheung M, Hadikhani P, Osmanbeyoglu HU, Klein-Szanto AJ, Cai K, Testa JR. Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:1004-1015. [PMID: 38592450 PMCID: PMC11000687 DOI: 10.1158/2767-9764.crc-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene-environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. SIGNIFICANCE We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.
Collapse
Affiliation(s)
- Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maggie Ruan
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Parham Hadikhani
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathy Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Villy MC, Le Ven A, Le Mentec M, Masliah-Planchon J, Houy A, Bièche I, Vacher S, Vincent-Salomon A, Dubois d'Enghien C, Schwartz M, Piperno-Neumann S, Matet A, Malaise D, Bubien V, Lortholary A, Ait Omar A, Cavaillé M, Stoppa-Lyonnet D, Cassoux N, Stern MH, Rodrigues M, Golmard L, Colas C. Familial uveal melanoma and other tumors in 25 families with monoallelic germline MBD4 variants. J Natl Cancer Inst 2024; 116:580-587. [PMID: 38060262 DOI: 10.1093/jnci/djad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Monoallelic germline MBD4 pathogenic variants were recently reported to cause a predisposition to uveal melanoma, associated with a specific tumor mutational signature and good response to immunotherapy. Monoallelic tumor pathogenic variants have also been described in brain tumors, breast cancers, and myxofibrosarcomas, whereas biallelic germline MBD4 pathogenic variants have been involved in a recessive hereditary adenomatous polyposis and a specific type of acute myeloid leukemia. METHODS We analyzed MBD4 for all patients with a diagnosis of uveal melanoma at Institut Curie since July 2021 and in the 3240 consecutive female probands explored at the Institut Curie for suspicion of predisposition to breast cancer between July 2021 and February 2023. RESULTS We describe 25 families whose probands carry a monoallelic germline pathogenic variant in MBD4. Eighteen of these families presented with uveal melanoma (including a case patient with multiple uveal melanoma), and 7 families presented with breast cancer. Family histories showed the first familial case of uveal melanoma in monoallelic MBD4 pathogenic variant carriers and other various types of cancers in relatives, especially breast, renal, and colorectal tumors. CONCLUSIONS Monoallelic MBD4 pathogenic variant may explain some cases of familial and multiple uveal melanoma as well as various cancer types, expanding the tumor spectrum of this predisposition. Further genetic testing in relatives combined with molecular tumor analyses will help define the tumor spectrum and estimate each tumor's risk.
Collapse
Affiliation(s)
- Marie-Charlotte Villy
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Anaïs Le Ven
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Marine Le Mentec
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Alexandre Houy
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Catherine Dubois d'Enghien
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Mathias Schwartz
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Sophie Piperno-Neumann
- Paris Sciences & Lettres Research University, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Alexandre Matet
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Denis Malaise
- Paris Sciences & Lettres Research University, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | | | - Alain Lortholary
- Department of Medical Oncology, GINECO-Hôpital Privé du Confluent, Nantes, France
| | - Amal Ait Omar
- Department of Gastroenterology, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Mathias Cavaillé
- Department of Oncogenetics, Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, AURAGEN, Clermont-Ferrand, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Nathalie Cassoux
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Manuel Rodrigues
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| |
Collapse
|
31
|
van Poppelen NM, Cassoux N, Turunen JA, Naus NC, Verdijk RM, Vaarwater J, Cohen V, Papastefanou VP, Kiratli H, Saakyan SV, Tsygankov AY, Rospond-Kubiak I, Mudhar HS, Salvi SM, Kiilgaard JF, Heegaard S, Moulin AP, Saornil MA, Garciá-Alvarez C, Fili M, Eide NA, Meyer P, Kivelä TT, de Klein A, Kilic E, Al-Jamal RT. The Pediatric and Young Adult Choroidal and Ciliary Body Melanoma Genetic Study, A Survey by the European Ophthalmic Oncology Group. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38573618 PMCID: PMC10996971 DOI: 10.1167/iovs.65.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/28/2023] [Indexed: 04/05/2024] Open
Abstract
Purpose To explore the genetic background of choroidal and ciliary body melanoma among children and young adults, with special focus on BAP1 germline variants in this age group. Methods Patients under the age of 25 and with confirmed choroidal or ciliary body melanoma were included in this retrospective, multicenter observational study. Nuclear BAP1 immunopositivity was used to evaluate the presence of functional BAP1 in the tumor. Next-generation sequencing using Ion Torrent platform was used to determine pathogenic variants of BAP1, EIF1AX, SF3B1, GNAQ and GNA11 and chromosome 3 status in the tumor or in DNA extracted from blood or saliva. Survival was analyzed using Kaplan-Meier estimates. Results The mean age at diagnosis was 17 years (range 5.0-24.8). A germline BAP1 pathogenic variant was identified in an 18-year-old patient, and a somatic variant, based mainly on immunohistochemistry, in 13 (42%) of 31 available specimens. One tumor had a somatic SF3B1 pathogenic variant. Disomy 3 and the absence of a BAP1 pathogenic variant in the tumor predicted the longest metastasis-free survival. Males showed longer metastasis-free survival than females (P = 0.018). Conclusions We did not find a stronger-than-average BAP1 germline predisposition for choroidal and ciliary body melanoma among children and young adults compared to adults. Males had a more favorable survival and disomy 3, and the absence of a BAP1 mutation in the tumor tissue predicted the most favorable metastasis-free survival. A BAP1 germline pathogenic variant was identified in one patient (1%), and a somatic variant based mainly on immunohistochemistry in 13 (42%).
Collapse
Affiliation(s)
- Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nathalie Cassoux
- Department of Ophthalmology, Curie Institute, Université Paris Cité UFR Médecine, Paris, France
| | - Joni A. Turunen
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert M. Verdijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden Universital Medical Center, Leiden, The Netherlands
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Victoria Cohen
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| | | | - Hayyam Kiratli
- Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Svetlana V. Saakyan
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Alexander Y. Tsygankov
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Iwona Rospond-Kubiak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznán, Poland
| | - Hardeep S. Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Sachin M. Salvi
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Jens F. Kiilgaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre P. Moulin
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Maria A. Saornil
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Ciro Garciá-Alvarez
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Maria Fili
- Department of Ophthalmology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nils A. Eide
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Peter Meyer
- Department of Ophthalmology, Basel University Hospital, Basel, Switzerland
| | - Tero T. Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emine Kilic
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rana'a T. Al-Jamal
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
32
|
Yilmaz ME, Rashidfarokhi M, Pollard K, Durmus N, Keserci S, Sterman DH, Arslan AA, Shao Y, Reibman J. Mesothelioma Cases in the World Trade Center Survivors. ANNALS OF CASE REPORTS 2024; 9:10.29011/2574-7754.101709. [PMID: 39568634 PMCID: PMC11578103 DOI: 10.29011/2574-7754.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Objectives The destruction of the World Trade Center (WTC) towers in New York City on September 11, 2001 (9/11), released approximately 1 million tons of pulverized particulate matter throughout southern Manhattan and areas in Brooklyn, exposing community members and responders to high levels of potentially toxic environmental particles. Asbestos exposure was a health concern because of its use in certain sections of the WTC towers. Malignant mesothelioma, originating from the lining cells (mesothelium) of the peritoneal and pleural cavities, is one complication associated with asbestos exposure. Methods The WTC Environmental Health Center (WTC EHC) is a treatment and surveillance program for community members (Survivors) exposed to WTC dust and fumes. Results In this report, we describe four cases of mesothelioma in the WTC EHC as of July 1st, 2023. Two of our patients have been diagnosed with peritoneal mesothelioma and two patients have been diagnosed with pleural mesothelioma. Conclusion Given the known delay in the development of mesotheliomas after asbestos exposure, we provide information on these early mesothelioma cases to enhance the understanding of the adverse health effects of WTC exposures on the local community.
Collapse
Affiliation(s)
- Muhammed E Yilmaz
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mahsan Rashidfarokhi
- Division of Pulmonary and Critical Care Medicine, Elmhurst Hospital Center, Icahn School of Medicine, Elmhurst, NY, USA
| | - Kenna Pollard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nedim Durmus
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sefa Keserci
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alan A Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
33
|
Liang Y, Wang H, Seija N, Lin YH, Tung LT, Di Noia JM, Langlais D, Nijnik A. B-cell intrinsic regulation of antibody mediated immunity by histone H2A deubiquitinase BAP1. Front Immunol 2024; 15:1353138. [PMID: 38529289 PMCID: PMC10961346 DOI: 10.3389/fimmu.2024.1353138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.
Collapse
Affiliation(s)
- Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Wunderlich K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1016. [PMID: 38473375 DOI: 10.3390/cancers16051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Skin cancer is the most frequently diagnosed cancer globally and is preventable. Various risk factors contribute to different types of skin cancer, including melanoma, basal cell carcinoma, and squamous cell carcinoma. These risk factors encompass both extrinsic, such as UV exposure and behavioral components, and intrinsic factors, especially involving genetic predisposition. However, the specific risk factors vary among the skin cancer types, highlighting the importance of precise knowledge to facilitate appropriate early diagnosis and treatment for at-risk individuals. Better understanding of the individual risk factors has led to the development of risk scores, allowing the identification of individuals at particularly high risk. These advances contribute to improved prevention strategies, emphasizing the commitment to mitigating the impact of skin cancer.
Collapse
Affiliation(s)
- K Wunderlich
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - M Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Dermatology, Institute Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - S Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology, IRCCS, 20139 Milan, Italy
| | - J Lipski
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - J M White
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - V Del Marmol
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Dermatology, Institute Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
35
|
Repo PE, Backlund MP, Kivelä TT, Turunen JA. Functional assay for assessment of pathogenicity of BAP1 variants. Hum Mol Genet 2024; 33:426-434. [PMID: 37956408 PMCID: PMC10877462 DOI: 10.1093/hmg/ddad193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pathogenic germline variants in BRCA1-Associated Protein 1 (BAP1) cause BAP1 tumor predisposition syndrome (BAP1-TPDS). Carriers run especially a risk of uveal (UM) and cutaneous melanoma, malignant mesothelioma, and clear cell renal carcinoma. Approximately half of increasingly reported BAP1 variants lack accurate classification. Correct interpretation of pathogenicity can improve prognosis of the patients through tumor screening with better understanding of BAP1-TPDS. METHODS We edited five rare BAP1 variants with differing functional characteristics identified from patients with UM in HAP1 cells using CRISPR-Cas9 and assayed their effect on cell adhesion/spreading (at 4 h) and proliferation (at 48 h), measured as cell index (CI), using xCELLigence real-time analysis system. RESULTS In BAP1 knockout HAP1 cultures, cell number was half of wild type (WT) cultures at 48 h (p = 0.00021), reaching confluence later, and CI was 78% reduced (p < 0.0001). BAP1-TPDS-associated null variants c.67+1G>T and c.1780_1781insT, and a likely pathogenic missense variant c.281A>G reduced adhesion (all p ≤ 0.015) and proliferation by 74%-83% (all p ≤ 0.032). Another likely pathogenic missense variant c.680G>A reduced both by at least 50% (all p ≤ 0.032), whereas cells edited with likely benign one c.1526C>T grew similarly to WT. CONCLUSIONS BAP1 is essential for optimal fitness of HAP1 cells. Pathogenic and likely pathogenic BAP1 variants reduced cell fitness, reflected in adhesion/spreading and proliferation properties. Further, moderate effects were quantifiable. Variant modelling in HAP1 with CRISPR-Cas9 enabled functional analysis of coding and non-coding region variants in an endogenous expression system.
Collapse
Affiliation(s)
- Pauliina E Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Michael P Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ophthalmic Genetics and Rare Eye Diseases Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
36
|
Yanus GA, Kuligina ES, Imyanitov EN. Hereditary Renal Cancer Syndromes. Med Sci (Basel) 2024; 12:12. [PMID: 38390862 PMCID: PMC10885096 DOI: 10.3390/medsci12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Familial kidney tumors represent a rare variety of hereditary cancer syndromes, although systematic gene sequencing studies revealed that as many as 5% of renal cell carcinomas (RCCs) are associated with germline pathogenic variants (PVs). Most instances of RCC predisposition are attributed to the loss-of-function mutations in tumor suppressor genes, which drive the malignant progression via somatic inactivation of the remaining allele. These syndromes almost always have extrarenal manifestations, for example, von Hippel-Lindau (VHL) disease, fumarate hydratase tumor predisposition syndrome (FHTPS), Birt-Hogg-Dubé (BHD) syndrome, tuberous sclerosis (TS), etc. In contrast to the above conditions, hereditary papillary renal cell carcinoma syndrome (HPRCC) is caused by activating mutations in the MET oncogene and affects only the kidneys. Recent years have been characterized by remarkable progress in the development of targeted therapies for hereditary RCCs. The HIF2aplha inhibitor belzutifan demonstrated high clinical efficacy towards VHL-associated RCCs. mTOR downregulation provides significant benefits to patients with tuberous sclerosis. MET inhibitors hold promise for the treatment of HPRCC. Systematic gene sequencing studies have the potential to identify novel RCC-predisposing genes, especially when applied to yet unstudied populations.
Collapse
Affiliation(s)
- Grigory A. Yanus
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Ekaterina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Evgeny N. Imyanitov
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
- Laboratory of Molecular Biology, Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| |
Collapse
|
37
|
Agarwal A, Bathla G, Soni N, Desai A, Ajmera P, Rao D, Gupta V, Vibhute P. Newly Recognized Genetic Tumor Syndromes of the CNS in the 5th WHO Classification: Imaging Overview with Genetic Updates. AJNR Am J Neuroradiol 2024; 45:128-138. [PMID: 37945522 PMCID: PMC11285983 DOI: 10.3174/ajnr.a8039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
The nervous system is commonly involved in a wide range of genetic tumor-predisposition syndromes. The classification of genetic tumor syndromes has evolved during the past years; however, it has now become clear that these syndromes can be categorized into a relatively small number of major mechanisms, which form the basis of the new 5th edition of the World Health Organization book (beta online version) on genetic tumor syndromes. For the first time, the World Health Organization has also included a separate chapter on genetic tumor syndromes in the latest edition of all the multisystem tumor series, including the 5th edition of CNS tumors. Our understanding of these syndromes has evolved rapidly since the previous edition (4th edition, 2016) with recognition of 8 new syndromes, including the following: Elongator protein complex-medulloblastoma syndrome, BRCA1-associated protein 1 tumor-predisposition syndrome, DICER1 syndrome, familial paraganglioma syndrome, melanoma-astrocytoma syndrome, Carney complex, Fanconi anemia, and familial retinoblastoma. This review provides a description of these new CNS tumor syndromes with a focus on imaging and genetic characteristics.
Collapse
Affiliation(s)
- Amit Agarwal
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Girish Bathla
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Neetu Soni
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Pranav Ajmera
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Dinesh Rao
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Prasanna Vibhute
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
38
|
Marshall T, Lane J, Lahorra J. A Rare Presentation of Minimally Invasive Mesothelioma as a Large Tension Pneumothorax. Int J Surg Pathol 2024; 32:109-114. [PMID: 37128670 DOI: 10.1177/10668969231167492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of mesothelioma is associated with asbestos exposure. Common presentations are with pleural-based plaques invading the chest wall and/or pleural effusion on chest imaging. The intent of this case report is to describe a rare presentation of mesothelioma, which presented atypically as a large tension pneumothorax. A 93-year-old male presented with a history of dyspnea that started after a coughing episode. On physical examination he was hemodynamically stable, but was hypoxic requiring 2L of supplemental oxygen. Computed tomography of the chest revealed a large right tension pneumothorax. A chest tube was placed and connected to suction (-20cmH20), but he continued to have an unresolving air leak over the following 2-week period. Upon video-assisted thoracotomy there were no blebs or adhesions seen. Right apical wedge resection and talc pleurodesis were performed. Pathologic examination revealed an atypical mesothelial cell proliferation with minimal, focal invasion into the pulmonary parenchyma. Tumor spread along the visceral pleura was thought to be the underlying cause of the pneumothorax. The surgical margins were uninvolved by the tumor, and the patient was later discharged home in stable condition. This was a rare presentation of what could best be described as minimally invasive mesothelioma arising in a background of probable mesothelioma in situ, which presented atypically as a large tension pneumothorax. This case highlighted the importance of establishing a pathologic diagnosis from pleural effusion cytology and/or pleural biopsy in persons presenting with spontaneous pneumothorax, and the difficulty in confirming a pathologic diagnosis of early mesothelial neoplasia.
Collapse
Affiliation(s)
- Tanya Marshall
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
- Pulmonary Critical Care Division, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Jason Lane
- Department of Pathology, Cleveland Clinic Akron General, Akron, OH, USA
| | - Joseph Lahorra
- Department of Cardiothoracic Surgery, Cleveland Clinic Akron General, Akron, OH, USA
| |
Collapse
|
39
|
Eteghadi A, Ebrahimi M, Keshel SH. New immunotherapy approaches as the most effective treatment for uveal melanoma. Crit Rev Oncol Hematol 2024; 194:104260. [PMID: 38199429 DOI: 10.1016/j.critrevonc.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Conventional methods of UM treatment are based on chemotherapy and radiotherapy, which have been able to control tumor growth in a limited way. But due to the inadequacy and many side effects of these treatments, many UM patients die during treatment, and approximately 50% of patients develop metastasis. Meanwhile, the 2-year survival rate of these patients from the time of metastasis is 8%. Since immunotherapy has the potential to be the most specific and efficient method in the treatment of tumors, it is considered an attractive and promising research field in the treatment of UM. This review highlights recent advances in UM immunotherapy and provides new immunological approaches on how to overcome the challenges of UM immunotherapy.
Collapse
Affiliation(s)
- Atefeh Eteghadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Huang J, Chan SC, Ko S, Lok V, Zhang L, Lin X, Lucero-Prisno DE, Xu W, Zheng ZJ, Elcarte E, Withers M, Wong MCS. Disease burden, risk factors, and temporal trends of eye cancer: A global analysis of cancer registries. Clin Exp Ophthalmol 2024. [PMID: 38281507 DOI: 10.1111/ceo.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND This study aims to investigate the global disease burden, risk factors, and temporal trends of eye cancer by sex and age group. METHODS Databases including Cancer Incidence in Five Continents volumes I-XI, the Nordic Cancer Registries, the Surveillance, Epidemiology, and End Results Program and the WHO IARC mortality database were accessed to extract incidence and mortality data. Joinpoint regression analyses were conducted to evaluate the Average Annual Percentage Change of the incidence and mortality. RESULTS The age-standardised rates of eye cancer incidence and mortality were 0.49 and 0.08 globally in 2020. Higher incidence rates were observed in Sub-Saharan Africa (ASR = 4.06), Western Europe (ASR = 0.89), and Northern Europe (ASR = 0.84), but higher mortality was observed only in Sub-Saharan Africa (ASR = 1.59). Lower HDI, higher prevalence of UV exposure and lower prevalence of several lifestyle habits and metabolic syndromes were associated with higher incidence and mortality. There was an overall stable incidence trend and a decreasing mortality trend. Notably, all countries reporting decreasing trend in mortality were in the Asian or European region. CONCLUSIONS Although higher incidence was observed in both African and European regions, only the Sub-Saharan Africa region reported high mortality, indicating inequity in the access of healthcare and treatment resource. Higher prevalence of UV exposure was associated with both higher incidence and mortality. Education should be provided to increase the awareness of eye protection. An overall declining mortality trend was found, but it was limited to only Asian and European countries.
Collapse
Affiliation(s)
- Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sze Chai Chan
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Samantha Ko
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Veeleah Lok
- Department of Global Public Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Wanghong Xu
- School of Public Health, Fudan University, Shanghai, China
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Edmar Elcarte
- College of Nursing, University of the Philippines, Manila, Philippines
| | - Mellissa Withers
- Department of Population and Health Sciences, Institute for Global Health, University of Southern California, Los Angeles, California, USA
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- School of Public Health, Fudan University, Shanghai, China
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
41
|
Andreotti V, Vanni I, Pastorino L, Ghiorzo P, Bruno W. Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes (Basel) 2024; 15:104. [PMID: 38254993 PMCID: PMC10815363 DOI: 10.3390/genes15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The Protection of Telomere 1 (POT1) gene was identified as a melanoma predisposition candidate nearly 10 years ago. Thereafter, various cancers have been proposed as associated with germline POT1 variants in the context of the so-called POT1 Predisposition Tumor Syndrome (POT1-TPD). While the key role, and related risks, of the alterations in POT1 in melanoma are established, the correlation between germline POT1 variants and the susceptibility to other cancers partially lacks evidence, due also to the rarity of POT1-TPD. Issues range from the absence of functional or segregation studies to biased datasets or the need for a revised classification of variants. Furthermore, a proposal of a surveillance protocol related to the cancers associated with POT1 pathogenic variants requires reliable data to avoid an excessive, possibly unjustified, burden for POT1 variant carriers. We propose a critical perspective regarding data published over the last 10 years that correlate POT1 variants to various types of cancer, other than cutaneous melanoma, to offer food for thought for the specialists who manage cancer predisposition syndromes and to stimulate a debate on the grey areas that have been exposed.
Collapse
Affiliation(s)
- Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
42
|
Lee J, Turetsky J, Nasri E, Rogers SC. Complete clinical remission of malignant peritoneal mesothelioma with systemic pemetrexed and bevacizumab in a patient with a BAP1 mutation. BMJ Case Rep 2023; 16:e255916. [PMID: 38142057 DOI: 10.1136/bcr-2023-255916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare malignancy with historically poor prognosis. Recent research has started to reveal increasingly prevalent genetic mutations seen in this malignancy. Here, we report a case of complete clinical remission of unresectable, metastatic MPeM with systemic chemotherapy. Immunohistochemistry of our patient's malignant cytology sample showed loss of Breast Cancer Gene 1-associated protein-1 expression (BAP1). The patient had synchronous diagnoses of primary squamous cell carcinoma of the anus, benign schwannoma and meningioma. Following the completion of 18 cycles of pemetrexed and bevacizumab, the patient has remained in clinical remission for 8 months. We examine the unusual susceptibility of unresectable MPeM to systemic chemotherapy and attribute susceptibility to the molecular milieu created by mutations in multiple DNA repair pathways. We encourage increased testing for and analysis of mutations in DNA repair pathways to improve future treatment outcomes in this rare malignancy.
Collapse
Affiliation(s)
- Jimmy Lee
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jordan Turetsky
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elham Nasri
- Department of Pathology, Immunology and Laboratory Health, University of Florida Health, Gainesville, Florida, USA
| | - Sherise C Rogers
- Department of Medicine, Division of Hematology & Oncology, University of Florida Health, Gainesville, Florida, USA
| |
Collapse
|
43
|
Helgadottir H, Schultz K, Lapins J, Höiom V. Familial features affecting the melanoma risk in CDKN2A-negative melanoma families: a study based on the Swedish Cancer Registry. Acta Oncol 2023; 62:1967-1972. [PMID: 37801364 DOI: 10.1080/0284186x.2023.2265052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karina Schultz
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lapins
- Department of Dermatology, Karolinska University Hospital, Stockholm
- Dermatology and Venereology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Pellegrini C, Cardelli L, Ghiorzo P, Pastorino L, Potrony M, García-Casado Z, Elefanti L, Stefanaki I, Mastrangelo M, Necozione S, Aguilera P, Rodríguez-Hernández A, Di Nardo L, Rocco T, Del Regno L, Badenas C, Carrera C, Malvehy J, Requena C, Bañuls J, Stratigos AJ, Peris K, Menin C, Calista D, Nagore E, Puig S, Landi MT, Fargnoli MC. High- and intermediate-risk susceptibility variants in melanoma families from the Mediterranean area: A multicentre cohort from the MelaNostrum Consortium. J Eur Acad Dermatol Venereol 2023; 37:2498-2508. [PMID: 37611275 PMCID: PMC10842987 DOI: 10.1111/jdv.19461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Most of large epidemiological studies on melanoma susceptibility have been conducted on fair skinned individuals (US, Australia and Northern Europe), while Southern European populations, characterized by high UV exposure and dark-skinned individuals, are underrepresented. OBJECTIVES We report a comprehensive pooled analysis of established high- and intermediate-penetrance genetic variants and clinical characteristics of Mediterranean melanoma families from the MelaNostrum Consortium. METHODS Pooled epidemiological, clinical and genetic (CDKN2A, CDK4, ACD, BAP1, POT1, TERT, and TERF2IP and MC1R genes) retrospective data of melanoma families, collected within the MelaNostrum Consortium in Greece, Italy and Spain, were analysed. Univariate methods and multivariate logistic regression models were used to evaluate the association of variants with characteristics of families and of affected and unaffected family members. Subgroup analysis was performed for each country. RESULTS We included 839 families (1365 affected members and 2123 unaffected individuals). Pathogenic/likely pathogenic CDKN2A variants were identified in 13.8% of families. The strongest predictors of melanoma were ≥2 multiple primary melanoma cases (OR 8.1; 95% CI 3.3-19.7), >3 affected members (OR 2.6; 95% CI 1.3-5.2) and occurrence of pancreatic cancer (OR 4.8; 95% CI 2.4-9.4) in the family (AUC 0.76, 95% CI 0.71-0.82). We observed low frequency variants in POT1 (3.8%), TERF2IP (2.5%), ACD (0.8%) and BAP1 (0.3%). MC1R common variants (≥2 variants and ≥2 RHC variants) were associated with melanoma risk (OR 1.4; 95% CI 1.0-2.0 and OR 4.3; 95% CI 1.2-14.6, respectively). CONCLUSIONS Variants in known high-penetrance genes explain nearly 20% of melanoma familial aggregation in Mediterranean areas. CDKN2A melanoma predictors were identified with potential clinical relevance for cancer risk assessment.
Collapse
Affiliation(s)
- C Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - L Cardelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetica dei Tumori rari, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - L Pastorino
- IRCCS Ospedale Policlinico San Martino, Genetica dei Tumori rari, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - M Potrony
- Department of Biochemistry and Molecular Genetics, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Z García-Casado
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, València, Spain
| | - L Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - I Stefanaki
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Mastrangelo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - S Necozione
- Epidemiology Unit, Department of Life, Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
| | - P Aguilera
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | | | - L Di Nardo
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Rocco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Dermatology Unit, Ospedale San Salvatore, L'Aquila, Italy
| | - L Del Regno
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Badenas
- Department of Biochemistry and Molecular Genetics, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Carrera
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - J Malvehy
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - C Requena
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - J Bañuls
- Department of Dermatology, Hospital General Universitario de Alicante, Alicante, Spain
| | - A J Stratigos
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - K Peris
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - D Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - E Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - S Puig
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - M T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - M C Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Dermatology Unit, Ospedale San Salvatore, L'Aquila, Italy
| |
Collapse
|
45
|
Lalloo F, Kulkarni A, Chau C, Nielsen M, Sheaff M, Steele J, van Doorn R, Wadt K, Hamill M, Torr B, Tischkowitz M, Hanson H. Clinical practice guidelines for the diagnosis and surveillance of BAP1 tumour predisposition syndrome. Eur J Hum Genet 2023; 31:1261-1269. [PMID: 37607989 PMCID: PMC10620132 DOI: 10.1038/s41431-023-01448-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a recognised tumour suppressor gene. Germline BAP1 pathogenic/likely pathogenic variants are associated with predisposition to multiple tumours, including uveal melanoma, malignant pleural and peritoneal mesothelioma, renal cell carcinoma and specific non-malignant neoplasms of the skin, as part of the autosomal dominant BAP1-tumour predisposition syndrome. The overall lifetime risk for BAP1 carriers to develop at least one BAP1-associated tumour is up to 85%, although due to ascertainment bias, current estimates of risk are likely to be overestimated. As for many rare cancer predisposition syndromes, there is limited scientific evidence to support the utility of surveillance and, therefore, management recommendations for BAP1 carriers are based on expert opinion. To date, European recommendations for BAP1 carriers have not been published but are necessary due to the emerging phenotype of this recently described syndrome and increased identification of BAP1 carriers via large gene panels or tumour sequencing. To address this, the Clinical Guideline Working Group of the CanGene-CanVar project in the United Kingdom invited European collaborators to collaborate to develop guidelines to harmonize surveillance programmes within Europe. Recommendations with respect to BAP1 testing and surveillance were achieved following literature review and Delphi survey completed by a core group and an extended expert group of 34 European specialists including Geneticists, Ophthalmologists, Oncologists, Dermatologists and Pathologists. It is recognised that these largely evidence-based but pragmatic recommendations will evolve over time as further data from research collaborations informs the phenotypic spectrum and surveillance outcomes.
Collapse
Affiliation(s)
- Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anju Kulkarni
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cindy Chau
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael Sheaff
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Jeremy Steele
- Department of Oncology, Barts Health NHS Trust, London, UK
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Monica Hamill
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK
| | - Beth Torr
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Helen Hanson
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK.
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
46
|
Carbone M, Minaai M, Takinishi Y, Pagano I, Yang H. Preventive and therapeutic opportunities: targeting BAP1 and/or HMGB1 pathways to diminish the burden of mesothelioma. J Transl Med 2023; 21:749. [PMID: 37880686 PMCID: PMC10599047 DOI: 10.1186/s12967-023-04614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Mesothelioma is a cancer typically caused by asbestos. Mechanistically, asbestos carcinogenesis has been linked to the asbestos-induced release of HMGB1 from the nucleus to the cytoplasm, where HMGB1 promotes autophagy and cell survival, and to the extracellular space where HMGB1 promotes chronic inflammation and mesothelioma growth. Targeting HMGB1 inhibited asbestos carcinogenesis and the growth of mesothelioma. It is hoped that targeting HMGB1 will be a novel therapeutic strategy that benefits mesothelioma patients. Severe restrictions and/or a complete ban on the use of asbestos were introduced in the 80 and early 90s in the Western world. These measures have proven effective as the incidence of mesothelioma/per 100,000 persons is decreasing in these countries. However, the overall number of mesotheliomas in the Western world has not significantly decreased. There are several reasons for that which are discussed here: (1) the presence of asbestos in old constructions; (2) the development of rural areas containing asbestos or other carcinogenic mineral fibers in the terrain; (3) the discovery of an increasing fraction of mesotheliomas caused by germline genetic mutations of BAP1 and other tumor suppressor genes; (4) mesotheliomas caused by radiation therapy; (5) the overall increase in the population and of the fraction of older people who are much more susceptible to develop all types of cancers, including mesothelioma. In summary, the epidemiology of mesothelioma is changing, the ban on asbestos worked, there are opportunities to help mesothelioma patients especially those who develop in a background of germline mutations and there is the opportunity to prevent a mesothelioma epidemic in the developing world, where the use of asbestos is increasing exponentially. We hope that restrictive measures similar to those introduced in the Western world will soon be introduced in developing countries to prevent a mesothelioma epidemic.
Collapse
Affiliation(s)
- Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA.
| | - Michael Minaai
- Thoracic Oncology, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Yasutaka Takinishi
- Thoracic Oncology, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Ian Pagano
- Thoracic Oncology, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA.
| |
Collapse
|
47
|
Jensen MR, Jelsig AM, Gerdes AM, Hölmich LR, Kainu KH, Lorentzen HF, Hansen MH, Bak M, Johansson PA, Hayward NK, Van Overeem Hansen T, Wadt KA. TINF2 is a major susceptibility gene in Danish patients with multiple primary melanoma. HGG ADVANCES 2023; 4:100225. [PMID: 37646013 PMCID: PMC10461021 DOI: 10.1016/j.xhgg.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
TINF2 encodes the TINF2 protein, which is a subunit in the shelterin complex critical for telomere regulation. Three recent studies have associated six truncating germline variants in TINF2 that have previously been associated with a cancer predisposition syndrome (CPS) caused by elongation of the telomeres. This has added TINF2 to the long telomere syndrome genes, together with other telomere maintenance genes such as ACD, POT1, TERF2IP, and TERT. We report a clinical study of 102 Danish patients with multiple primary melanoma (MPM) in which a germline truncating variant in TINF2 (p.(Arg265Ter)) was identified in four unrelated participants. The telomere lengths of three variant carriers were >90% percentile. In a routine diagnostic setting, the variant was identified in two more families, including an additional MPM patient and monozygotic twins with thyroid cancer and other cancer types. A total of 10 individuals from six independent families were confirmed carriers, all with cancer history, predominantly melanoma. Our findings suggest a major role of TINF2 in Danish patients with MPM. In addition to melanoma, other cancers in the six families include thyroid, renal, breast, and sarcoma, supporting a CPS in which melanoma, thyroid cancer, and sarcoma predominate. Further studies are needed to establish the full spectrum of associated cancer types and characterize lifetime cancer risk in carriers.
Collapse
Affiliation(s)
- Marlene Richter Jensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic and Reconstructive Surgery, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Hannele Kainu
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, 2900 Gentofte, Denmark
| | | | | | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Thomas Van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A.W. Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Silva-Clavería F, Álvarez-Muñoz A, Ferrándiz L, Fernández-Orland A, Conde-Martin AF, Moreno-Ramírez D, Ríos-Martín JJ. Difficult to Diagnose Cutaneous Melanoma in a Patient with BAP1 Tumor Predisposition Syndrome. Int J Surg Pathol 2023; 31:1398-1402. [PMID: 36803128 DOI: 10.1177/10668969231152579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BRCA1-associated protein 1 (BAP1)-inactivated melanomas can occur sporadically or in germline contexts, particularly in recently recognized BAP1-tumor predisposition syndrome. Diagnosis represents a clinical and histopathological challenge, requiring comprehensive analysis of morphology and sometimes molecular analysis in addition to immunohistochemistry. We report a BAP1-inactivated cutaneous melanoma initially diagnosed as an atypical Spitz tumor on the auricle in a patient with BAP1-tumor predisposition syndrome. Immunohistochemistry, fluorescence in situ hybridization, and comparative genomic hybridization allowed diagnosis. Cutaneous BAP1-inactivated melanocytic tumors, previously classified as atypical Spitz Nevi, may have a dermal mitotic activity that can resemble melanoma and on the other hand, atypical Spitz tumors are sometimes difficult to differentiate from BAP1-inactivated melanoma. Specific criteria, requiring molecular diagnosis have been proposed in order to support melanoma diagnosis.
Collapse
Affiliation(s)
- Francisca Silva-Clavería
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | | | - Lara Ferrándiz
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | - Almudena Fernández-Orland
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | | | - David Moreno-Ramírez
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | - Juan J Ríos-Martín
- Pathology Department, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
49
|
Abstract
Up to 5% of renal cell carcinomas (RCCs) can be associated with a known hereditary RCC syndrome. In addition to the well-characterized RCC syndromes, there are also emerging syndromes associated with increased RCC risk. In the last few years, consensus guidelines have outlined recommendations for who should be referred for genetic evaluation, and what screening should be done for early detection of RCC. Although much progress has been made, work is still needed-guidelines are still mostly based on expert opinion and the role of emerging genetic associations will need to be clarified.
Collapse
Affiliation(s)
- Maria I Carlo
- Genitourinary Oncology Service, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, 353 East 68th Street. New York, NY 10065, USA.
| |
Collapse
|
50
|
Farinea G, Crespi V, Listì A, Righi L, Bironzo P, Merlini A, Malapelle U, Novello S, Scagliotti GV, Passiglia F. The Role of Germline Mutations in Thoracic Malignancies: Between Myth and Reality. J Thorac Oncol 2023; 18:1146-1164. [PMID: 37331604 DOI: 10.1016/j.jtho.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Considering the established contribution of environmental factors to the development of thoracic malignancies, the inherited susceptibility of these tumors has rarely been explored. However, the recent introduction of next-generation sequencing-based tumor molecular profiling in the real-word setting enabled us to deeply characterize the genomic background of patients with lung cancer with or without smoking-related history, increasing the likelihood of detecting germline mutations with potential prevention and treatment implications. Pathogenic germline variants have been detected in 2% to 3% of patients with NSCLC undergoing next-generation sequencing analysis, whereas the proportion of germline mutations associated with the development of pleural mesothelioma widely varies across different studies, ranging between 5% and 10%. This review provides an updated summary of emerging evidence about germline mutations in thoracic malignancies, focusing on pathogenetic mechanisms, clinical features, therapeutic implications, and screening recommendations for high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Veronica Crespi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| |
Collapse
|