1
|
Dikoglu E, Pareja F. Molecular Basis of Breast Tumor Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:237-257. [PMID: 39821029 DOI: 10.1007/978-3-031-70875-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer (BC) is a profoundly heterogenous disease, with diverse molecular, histological, and clinical variations. The intricate molecular landscape of BC is evident even at early stages, illustrated by the complexity of the evolution from precursor lesions to invasive carcinoma. The key for therapeutic decision-making is the dynamic assessment of BC receptor status and clinical subtyping. Hereditary BC adds an additional layer of complexity to the disease, given that different cancer susceptibility genes contribute to distinct phenotypes and genomic features. Furthermore, the various BC subtypes display distinct metabolic demands and immune microenvironments. Finally, genotypic-phenotypic correlations in special histologic subtypes of BC inform diagnostic and therapeutic approaches, highlighting the significance of thoroughly comprehending BC heterogeneity.
Collapse
Affiliation(s)
- Esra Dikoglu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Ghanem A, Domchek SM. New Therapeutic Options for BRCA Mutant Patients. Annu Rev Med 2025; 76:175-187. [PMID: 39630850 DOI: 10.1146/annurev-med-082523-083843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pathogenic variants in BRCA1 and BRCA2 are associated with significantly elevated lifetime risks of breast, ovarian, pancreatic, and prostate cancer. These genes are critical in double-strand break repair through homologous recombination. An understanding of the biology of BRCA1 and BRCA2 led to the development of targeted therapeutics, specifically poly(ADP-ribose) polymerase (PARP) inhibitors, which are approved by the US Food and Drug Administration for multiple BRCA1/2-associated cancers. Here, we discuss the development of PARP inhibitors, mechanisms of resistance, and the potential utility of these drugs beyond canonical BRCA1/2 tumors, and we describe novel agents under study.
Collapse
Affiliation(s)
- Anthony Ghanem
- Department of Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA;
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
3
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
4
|
Sargen MR, Kim J, Haley JS, Barker HP, Mundra PA, Ballinger ML, Thomas DM, Carey DJ, Goldstein AM, Stewart DR. Increased frequency of CHEK2 germline pathogenic variants among individuals with dermatofibrosarcoma protuberans. GENETICS IN MEDICINE OPEN 2024; 2:101895. [PMID: 39669616 PMCID: PMC11613564 DOI: 10.1016/j.gimo.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
Purpose To identify candidate susceptibility genes for dermatofibrosarcoma protuberans (DFSP). Methods All individuals with DFSP from the International Sarcoma Kindred Study (n = 3767 individuals with sarcoma diagnoses from Australia, Europe, New Zealand, and United States) and cohorts that were not ascertained based on sarcoma status or other phenotypes (Geisinger MyCode, n = 170,503 individuals, United States; UK Biobank, n = 469,789 individuals, United Kingdom) were evaluated for germline pathogenic or likely pathogenic (P/LP) variants in 156 cancer genes. Results There were 92 unrelated individuals with DFSP across the 3 cohorts. The mean age at diagnosis (standard deviation) in the International Sarcoma Kindred Study, Geisinger, and UK Biobank was 40.8 (14.5), 50.3 (9.4), and 49.4 (13.2) years, respectively. Germline P/LP variants were most common in the CHEK2 gene (4/92 [4.3%]). CHEK2-related cases were often associated with early onset disease (age at diagnosis: 30-39 years) and were observed in all 3 cohorts. Among 640,292 individuals in Geisinger and UK Biobank who were not ascertained based on phenotype, there was a significantly increased frequency of CHEK2 P/LP variants among individuals with DFSP (n = 3/65 [4.6%]) compared to those without (n = 6388/640,227 [1.0%]) (Fisher exact, P = .03). Additional genes with P/LP variation (1 case for each gene) included ACD, ERCC5, ERCC1, DOCK8, GBA1, ATM, MUTYH, TP53, RECQL4, and COL7A1. Conclusion This study of multiple cohorts identifies CHEK2 as a candidate susceptibility gene for DFSP. Additional epidemiologic and functional studies are needed to further characterize this potential gene-tumor relationship.
Collapse
Affiliation(s)
- Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jeremy S. Haley
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, PA
| | | | - Piyushkumar A. Mundra
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mandy L. Ballinger
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David M. Thomas
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Molecular Oncology, University of New South Wales, Sydney, NSW, Australia
| | - David J. Carey
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, PA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
5
|
Davidson AL, Michailidou K, Parsons MT, Fortuno C, Bolla MK, Wang Q, Dennis J, Naven M, Abubakar M, Ahearn TU, Alonso MR, Andrulis IL, Antoniou AC, Auvinen P, Behrens S, Bermisheva MA, Bogdanova NV, Bojesen SE, Brüning T, Byers HJ, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Gronwald J, Guénel P, Hadjisavvas A, Haeberle L, Hall P, Hamann U, Hartman M, Ho PJ, Hooning MJ, Hoppe R, Howell A, Jakubowska A, Khusnutdinova EK, Kristensen VN, Li J, Lim J, Lindblom A, Liu J, Lophatananon A, Mannermaa A, Mavroudis DA, Mensenkamp AR, Milne RL, Muir KR, Newman WG, Obi N, Panayiotidis MI, Park SK, Park-Simon TW, Peterlongo P, Radice P, Rashid MU, Rhenius V, Saloustros E, Sawyer EJ, Schmidt MK, Seibold P, Shah M, Southey MC, Teo SH, Tomlinson I, Torres D, Truong T, van de Beek I, van der Hout AH, Wendt CC, Dunning AM, Pharoah PDP, Devilee P, Easton DF, James PA, Spurdle AB. Co-observation of germline pathogenic variants in breast cancer predisposition genes: Results from analysis of the BRIDGES sequencing dataset. Am J Hum Genet 2024; 111:2059-2069. [PMID: 39096911 PMCID: PMC11393698 DOI: 10.1016/j.ajhg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/05/2024] Open
Abstract
Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.
Collapse
Affiliation(s)
- Aimee L Davidson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland; Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina A Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, 44789 Bochum, Germany
| | - Helen J Byers
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, 36312 Vigo, Spain
| | - Melissa H Cessna
- Department of Pathology, Intermountain Health, Murray, UT, USA; Intermountain Biorepository, Intermountain Health, Murray, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Fundación Pública Gallega de IDIS, Cancer Genetics and Epidemiology Group, Genomic Medicine Group, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; The Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Health and Medical University, Potsdam, Germany
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of Surgery, National University Hospital and National University Health System, Singapore City 119228, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City 119228, Singapore
| | - Peh Joo Ho
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 171-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Federal State Budgetary Educational Institution of Higher Education, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Joanna Lim
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jenny Liu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of General Surgery, Ng Teng Fong General Hospital, Singapore City 609606, Singapore
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Dimitrios A Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen GA, the Netherlands
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | | | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Paolo Radice
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Emmanouil Saloustros
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur 50603, Malaysia
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford OX3 7LF, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Irma van de Beek
- Department of Clinical Genetics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Annemieke H van der Hout
- Department of Genetics, University Medical Center Groningen, University Groningen, 9713 GZ Groningen, the Netherlands
| | - Camilla C Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul A James
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Hinić S, van der Post RS, Vreede L, Schuurs-Hoeijmakers J, Koene S, Jansen EAM, Bervoets-Metge F, Mensenkamp AR, Hoogerbrugge N, Ligtenberg MJL, de Voer RM. The genomic landscape of breast and non-breast cancers from individuals with germline CHEK2 deficiency. JNCI Cancer Spectr 2024; 8:pkae044. [PMID: 38848470 PMCID: PMC11216722 DOI: 10.1093/jncics/pkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
CHEK2 is considered to be involved in homologous recombination repair (HRR). Individuals who have germline pathogenic variants (gPVs) in CHEK2 are at increased risk to develop breast cancer and likely other primary cancers. PARP inhibitors (PARPi) have been shown to be effective in the treatment of cancers that present with HRR deficiency-for example, caused by inactivation of BRCA1/2. However, clinical trials have shown little to no efficacy of PARPi in patients with CHEK2 gPVs. Here, we show that both breast and non-breast cancers from individuals who have biallelic gPVs in CHEK2 (germline CHEK2 deficiency) do not present with molecular profiles that fit with HRR deficiency. This finding provides a likely explanation why PARPi therapy is not successful in the treatment of CHEK2-deficient cancers.
Collapse
Affiliation(s)
- Snežana Hinić
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Lilian Vreede
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Franziska Bervoets-Metge
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Summey RM, Gornstein E, Decker B, Dougherty KC, Rader JS, Hopp E. Landscape of potential germline pathogenic variants in select cancer susceptibility genes in patients with adult-type ovarian granulosa cell tumors. Cancer Med 2024; 13:e7340. [PMID: 38898688 PMCID: PMC11187164 DOI: 10.1002/cam4.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the frequency of potential germline pathogenic variants that may contribute to risk of development of adult granulosa cell tumors (AGCT) given the paucity of germline testing guidelines for these patients. METHODS This was a retrospective cross-sectional study analyzing comprehensive genomic profiling (CGP) results of AGCT with the FOXL2 p.C134W mutation submitted to Foundation Medicine between 2012 and 2022. Cases with a potential germline pathogenic variant were identified by filtering single nucleotide variants and short indels by variant allele frequency (VAF) and presence in ClinVar for select cancer susceptibility genes. Odds ratios for AGCT risk were calculated compared to a healthy population. RESULTS Prior to analysis, 595 patients were screened and 516 with a somatic FOXL2 p.C134W mutation were included. Potential germline pathogenic variants in a DNA repair-related gene (ATM, BRCA1, BRCA2, CHEK2, PALB2, PMS2, RAD51C, or RAD51D) were found in 6.6% of FOXL2-mutated AGCT. Potential germline pathogenic CHEK2 variants were found in 3.5% (18/516) of AGCT patients, a rate that was 2.8-fold higher than Genome Aggregation Database non-cancer subjects (95% CI 1.8-4.6, p < 0.001). The founder variants p.I157T (38.9%, 7/18) and p.T367fs*15 (c.1100delC; 27.8%, 5/18) were most commonly observed. CHEK2 VAF indicated frequent loss of the wildtype copy of the gene. CONCLUSIONS These results support ongoing utilization of genomic tumor profiling and confirmatory germline testing for potential germline pathogenic variants. Further prospective investigation into the biology of germline variants in this population is warranted.
Collapse
Affiliation(s)
- Rebekah M. Summey
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | | | | | - Janet S. Rader
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Elizabeth Hopp
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
8
|
Schwartz CJ, Khorsandi N, Blanco A, Mukhtar RA, Chen YY, Krings G. Clinicopathologic and genetic analysis of invasive breast carcinomas in women with germline CHEK2 variants. Breast Cancer Res Treat 2024; 204:171-179. [PMID: 38091153 PMCID: PMC10806021 DOI: 10.1007/s10549-023-07176-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE Germline pathogenic variants in checkpoint kinase 2 (CHEK2) are associated with a moderately increased risk of breast cancer (BC). The spectrum of clinicopathologic features and genetics of these tumors has not been fully established. METHODS We characterized the histopathologic and clinicopathologic features of 44 CHEK2-associated BCs from 35 women, and assessed responses to neoadjuvant chemotherapy. A subset of cases (n = 23) was additionally analyzed using targeted next-generation DNA sequencing (NGS). RESULTS Most (94%, 33/35) patients were heterozygous carriers for germline CHEK2 variants, and 40% had the c.1100delC allele. Two patients were homozygous, and five had additional germline pathogenic variants in ATM (2), PALB2 (1), RAD50 (1), or MUTYH (1). CHEK2-associated BCs occurred in younger women (median age 45 years, range 25-75) and were often multifocal (20%) or bilateral (11%). Most (86%, 38/44) were invasive ductal carcinomas of no special type (IDC-NST). Almost all (95%, 41/43) BCs were ER + (79% ER + HER2-, 16% ER + HER2 + , 5% ER-HER2 +), and most (69%) were luminal B. Nottingham grade, proliferation index, and results of multiparametric molecular testing were heterogeneous. Biallelic CHEK2 alteration with loss of heterozygosity was identified in most BCs (57%, 13/23) by NGS. Additional recurrent alterations included GATA3 (26%), PIK3CA (226%), CCND1 (22%), FGFR1 (22%), ERBB2 (17%), ZNF703 (17%), TP53 (9%), and PPM1D (9%), among others. Responses to neoadjuvant chemotherapy were variable, but few patients (21%, 3/14) achieved pathologic complete response. Most patients (85%) were without evidence of disease at time of study (n = 34). Five patients (15%) developed distant metastasis, and one (3%) died (mean follow-up 50 months). CONCLUSION Almost all CHEK2-associated BCs were ER + IDC-NST, with most classified as luminal B with or without HER2 overexpression. NGS supported the luminal-like phenotype and confirmed CHEK2 as an oncogenic driver in the majority of cases. Responses to neoadjuvant chemotherapy were variable but mostly incomplete.
Collapse
Affiliation(s)
- Christopher J Schwartz
- Department of Pathology, University of California San Francisco (UCSF), 1825 4th Street, San Francisco, CA, 94143, USA.
| | - Nikka Khorsandi
- Department of Pathology, University of California San Francisco (UCSF), 1825 4th Street, San Francisco, CA, 94143, USA
| | - Amie Blanco
- Department of Cancer Genetics and Prevention Program, UCSF, San Francisco, CA, USA
| | | | - Yunn-Yi Chen
- Department of Pathology, University of California San Francisco (UCSF), 1825 4th Street, San Francisco, CA, 94143, USA
| | - Gregor Krings
- Department of Pathology, University of California San Francisco (UCSF), 1825 4th Street, San Francisco, CA, 94143, USA
| |
Collapse
|
9
|
van Wijk LM, Vermeulen S, Ter Haar NT, Kramer CJH, Terlouw D, Vrieling H, Cohen D, Vreeswijk MPG. Performance of a RAD51-based functional HRD test on paraffin-embedded breast cancer tissue. Breast Cancer Res Treat 2023; 202:607-616. [PMID: 37725154 PMCID: PMC10564840 DOI: 10.1007/s10549-023-07102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE BRCA-deficient breast cancers (BC) are highly sensitive to platinum-based chemotherapy and PARP inhibitors due to their deficiency in the homologous recombination (HR) pathway. However, HR deficiency (HRD) extends beyond BRCA-associated BC, highlighting the need for a sensitive method to enrich for HRD tumors in an alternative way. A promising approach is the use of functional HRD tests which evaluate the HR capability of tumor cells by measuring RAD51 protein accumulation at DNA damage sites. This study aims to evaluate the performance of a functional RAD51-based HRD test for the identification of HRD BC. METHODS The functional HR status of 63 diagnostic formalin-fixed paraffin-embedded (FFPE) BC samples was determined by applying the RAD51-FFPE test. Samples were screened for the presence of (epi)genetic defects in HR and matching tumor samples were analyzed with the RECAP test, which requires ex vivo irradiated fresh tumor tissue on the premise that the HRD status as determined by the RECAP test faithfully represented the functional HR status. RESULTS The RAD51-FFPE test identified 23 (37%) of the tumors as HRD, including three tumors with pathogenic variants in BRCA1/2. The RAD51-FFPE test showed a sensitivity of 88% and a specificity of 76% in determining the HR-class as defined by the RECAP test. CONCLUSION Given its high sensitivity and compatibility with FFPE samples, the RAD51-FFPE test holds great potential to enrich for HRD tumors, including those associated with BRCA-deficiency. This potential extends to situations where DNA-based testing may be challenging or not easily accessible in routine clinical practice. This is particularly important considering the potential implications for treatment decisions and patient stratification.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Natalja T Ter Haar
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Claire J H Kramer
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
11
|
Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, VandenHeuvel SN, Noltensmeyer DA, Punturi NB, Lei JT, Lim B, Waltz SE, Raghavan SA, Bainbridge MN, Haricharan S. Molecular portraits of cell cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. SCIENCE ADVANCES 2023; 9:eadf2860. [PMID: 37390209 PMCID: PMC10313178 DOI: 10.1126/sciadv.adf2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..
Collapse
Affiliation(s)
- Elena Oropeza
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sabrina Carrel
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aloran Mazumder
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniel Lozano
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | - Nindo B. Punturi
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Research Service, Cincinnati Veteran's Affairs Medical Center, 3200 Vine St., Cincinnati, OH, USA
| | | | | | - Svasti Haricharan
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
12
|
Andersen LVB, Larsen MJ, Davies H, Degasperi A, Nielsen HR, Jensen LA, Kroeldrup L, Gerdes AM, Lænkholm AV, Kruse TA, Nik-Zainal S, Thomassen M. Non-BRCA1/BRCA2 high-risk familial breast cancers are not associated with a high prevalence of BRCAness. Breast Cancer Res 2023; 25:69. [PMID: 37316882 DOI: 10.1186/s13058-023-01655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Familial breast cancer is in most cases unexplained due to the lack of identifiable pathogenic variants in the BRCA1 and BRCA2 genes. The somatic mutational landscape and in particular the extent of BRCA-like tumour features (BRCAness) in these familial breast cancers where germline BRCA1 or BRCA2 mutations have not been identified is to a large extent unknown. METHODS We performed whole-genome sequencing on matched tumour and normal samples from high-risk non-BRCA1/BRCA2 breast cancer families to understand the germline and somatic mutational landscape and mutational signatures. We measured BRCAness using HRDetect. As a comparator, we also analysed samples from BRCA1 and BRCA2 germline mutation carriers. RESULTS We noted for non-BRCA1/BRCA2 tumours, only a small proportion displayed high HRDetect scores and were characterized by concomitant promoter hypermethylation or in one case a RAD51D splice variant previously reported as having unknown significance to potentially explain their BRCAness. Another small proportion showed no features of BRCAness but had mutationally active tumours. The remaining tumours lacked features of BRCAness and were mutationally quiescent. CONCLUSIONS A limited fraction of high-risk familial non-BRCA1/BRCA2 breast cancer patients is expected to benefit from treatment strategies against homologue repair deficient cancer cells.
Collapse
Affiliation(s)
- Lars V B Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helen Davies
- Hutchison Research Centre, Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrea Degasperi
- Hutchison Research Centre, Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | - Louise A Jensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, 4000, Roskilde, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Serena Nik-Zainal
- Hutchison Research Centre, Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- European Sperm Bank, Copenhagen, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Smid M, Schmidt MK, Prager-van der Smissen WJC, Ruigrok-Ritstier K, Schreurs MAC, Cornelissen S, Garcia AM, Broeks A, Timmermans AM, Trapman-Jansen AMAC, Collée JM, Adank MA, Hooning MJ, Martens JWM, Hollestelle A. Breast cancer genomes from CHEK2 c.1100delC mutation carriers lack somatic TP53 mutations and display a unique structural variant size distribution profile. Breast Cancer Res 2023; 25:53. [PMID: 37161532 PMCID: PMC10169359 DOI: 10.1186/s13058-023-01653-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC. METHODS We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases. RESULTS BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile. CONCLUSIONS CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.
Collapse
Affiliation(s)
- Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Maartje A C Schreurs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Aida Marsal Garcia
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - A Mieke Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
CHEK2 Alterations in Pediatric Malignancy: A Single-Institution Experience. Cancers (Basel) 2023; 15:cancers15061649. [PMID: 36980535 PMCID: PMC10046043 DOI: 10.3390/cancers15061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Approximately 10% of pediatric malignancies are secondary to germline alterations in cancer-predisposing genes. Checkpoint kinase 2 (CHEK2) germline loss-of-function variants have been reported in pediatric cancer patients, but clinical phenotypes and outcomes are poorly described. We present our single-institution experience of pediatric oncology patients with CHEK2 germline alterations, including clinical presentations and outcomes. Methods: Pediatric oncology patients with CHEK2 germline alterations were identified among those assessed by clinical or translational research at the Institute for Genomic Medicine at Nationwide Children’s Hospital. A chart review of disease course was conducted on identified patients. Results: We identified 6 patients with germline CHEK2 variants from a cohort of 300 individuals, including 1 patient with concurrent presentation of Burkitt lymphoma and neuroblastoma, 3 patients with brain tumors, 1 patient with Ewing sarcoma, and 1 patient with myelodysplastic syndrome. Three patients had a family history of malignancies. Four patients were in remission; one was undergoing treatment; one patient had developed treatment-related meningiomas. We review prior data regarding CHEK2 variants in this population, challenges associated with variant interpretation, and genetic counseling for individuals with CHEK2 variants. Conclusions: CHEK2 germline loss-of-function alterations occur in patients with a variety of pediatric tumors. Larger multicenter studies will improve our understanding of the incidence, phenotype, and molecular biology of CHEK2 germline variants in pediatric cancers.
Collapse
|
15
|
Lim BWX, Li N, Mahale S, McInerny S, Zethoven M, Rowley SM, Huynh J, Wang T, Lee JEA, Friedman M, Devereux L, Scott RJ, Sloan EK, James PA, Campbell IG. Somatic inactivation of breast cancer predisposition genes in tumors associated with pathogenic germline variants. J Natl Cancer Inst 2022; 115:181-189. [PMID: 36315097 PMCID: PMC9905963 DOI: 10.1093/jnci/djac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancers (BCs) that arise in individuals heterozygous for a germline pathogenic variant in a susceptibility gene, such as BRCA1 and BRCA2, PALB2, and RAD51C, have been shown to exhibit biallelic loss in the respective genes and be associated with triple-negative breast cancer (TNBC) and distinctive somatic mutational signatures. Tumor sequencing thus presents an orthogonal approach to assess the role of candidate genes in BC development. METHODS Exome sequencing was performed on paired normal-breast tumor DNA from 124 carriers of germline loss-of-function (LoF) or missense variant carriers in 15 known and candidate BC predisposition genes identified in the BEACCON case-control study. Biallelic inactivation and association with tumor genome features including mutational signatures and homologous recombination deficiency (HRD) score were investigated. RESULTS BARD1-carrying TNBC (4 of 5) displayed biallelic loss and associated high HRD scores and mutational signature 3, as did a RAD51D-carrying TNBC and ovarian cancer. Biallelic loss was less frequent in BRIP1 BCs (4 of 13) and had low HRD scores. In contrast to other established BC genes, BCs from carriers of CHEK2 LoF (6 of 17) or missense (2 of 20) variant had low rates of biallelic loss. Exploratory analysis of BC from carriers of LoF variants in candidate genes such as BLM, FANCM, PARP2, and RAD50 found little evidence of biallelic inactivation. CONCLUSIONS BARD1 and RAD51D behave as classic BRCA-like predisposition genes with biallelic inactivation, but this was not observed for any of the candidate genes. However, as demonstrated for CHEK2, the absence of biallelic inactivation does not provide definitive evidence against the gene's involvement in BC predisposition.
Collapse
Affiliation(s)
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sakshi Mahale
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joanne Huynh
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Theresa Wang
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mia Friedman
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Lifepool, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Scott
- Discipline of Medical Genetics and The Centre for Cancer Detection and Therapy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia,Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, New South Wales, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Ian G Campbell
- Correspondence to: Ian Campbell, PhD, Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia (e-mail: )
| |
Collapse
|
16
|
Zhang SS, Lee JK, Tukachinsky H, Schrock AB, Nagasaka M, Ou SHI. A High Percentage of NSCLC With Germline CHEK2 Mutation Harbors Actionable Driver Alterations: Survey of a Cancer Genomic Database and Review of Literature. JTO Clin Res Rep 2022; 3:100387. [PMID: 36061833 PMCID: PMC9429789 DOI: 10.1016/j.jtocrr.2022.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Germline CHEK2 mutations are rare and have not been associated with increased risk of NSCLC. Methods We identified two sequential primary NSCLCs harboring distinct actionable driver alterations (EGFR E746 _S752 delinsV and CD74-ROS1) in a patient with NSCLC with a novel germline CHEK2 mutation S5fs∗54 (c.14_20delCGGATGT). We queried a genomic database of NSCLC samples profiled by plasma next-generation sequencing (Foundation Medicine Inc.) and performed a literature search of germline CHEK2 mutations in NSCLC. Results Of 6101 patients with unique NSCLC profiled by plasma next-generation sequencing, 53 cases (0.87%) of germline CHEK2 mutation were identified (male-to-female ratio, 49%:51%; median age = 75 y). The median allele frequency of CHEK2 was 49% (interquartile range: 49%-51%). Ten unique CHEK2 germline mutations were identified. Literature review identified 15 additional cases of germline CHEK2 mutations in NSCLC. Overall, a total of 70 CHEK2 germline mutations (21 unique CHEK2 alterations) were identified. Among these 70 CHEK2 germline mutations, 54.3% were amino acid substitutions (point mutation), 40.0% were frameshift mutations, and 5.7% were splice site mutations. Of these 70 total cases assessed, 29 (41.4%) potentially actionable driver alterations were identified with KRAS G12C mutation (27.6%) being the most common and KRAS G12A/C/D/R/S/V mutations together constituting 51.7% of these driver mutations. Conclusions Germline CHEK2 mutations are rare in NSCLC. A large proportion of these cases harbor actionable driver alterations. The relationship between germline CHEK2 mutations and actionable driver alterations in NSCLC may be worth further investigation.
Collapse
Affiliation(s)
- Shannon S. Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
| | | | | | | | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
- Chao Family Comprehensive Cancer Center, Orange, California
| | - Sai-Hong Ignatius Ou
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
17
|
Ceyhan-Birsoy O, Jayakumaran G, Kemel Y, Misyura M, Aypar U, Jairam S, Yang C, Li Y, Mehta N, Maio A, Arnold A, Salo-Mullen E, Sheehan M, Syed A, Walsh M, Carlo M, Robson M, Offit K, Ladanyi M, Reis-Filho JS, Stadler ZK, Zhang L, Latham A, Zehir A, Mandelker D. Diagnostic yield and clinical relevance of expanded genetic testing for cancer patients. Genome Med 2022; 14:92. [PMID: 35971132 PMCID: PMC9377129 DOI: 10.1186/s13073-022-01101-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic testing (GT) for hereditary cancer predisposition is traditionally performed on selected genes based on established guidelines for each cancer type. Recently, expanded GT (eGT) using large hereditary cancer gene panels uncovered hereditary predisposition in a greater proportion of patients than previously anticipated. We sought to define the diagnostic yield of eGT and its clinical relevance in a broad cancer patient population over a 5-year period. METHODS A total of 17,523 cancer patients with a broad range of solid tumors, who received eGT at Memorial Sloan Kettering Cancer Center between July 2015 to April 2020, were included in the study. The patients were unselected for current GT criteria such as cancer type, age of onset, and/or family history of disease. The diagnostic yield of eGT was determined for each cancer type. For 9187 patients with five common cancer types frequently interrogated for hereditary predisposition (breast, colorectal, ovarian, pancreatic, and prostate cancer), the rate of pathogenic/likely pathogenic (P/LP) variants in genes that have been associated with each cancer type was analyzed. The clinical implications of additional findings in genes not known to be associated with a patients' cancer type were investigated. RESULTS 16.7% of patients in a broad cancer cohort had P/LP variants in hereditary cancer predisposition genes identified by eGT. The diagnostic yield of eGT in patients with breast, colorectal, ovarian, pancreatic, and prostate cancer was 17.5%, 15.3%, 24.2%, 19.4%, and 15.9%, respectively. Additionally, 8% of the patients with five common cancers had P/LP variants in genes not known to be associated with the patient's current cancer type, with 0.8% of them having such a variant that confers a high risk for another cancer type. Analysis of clinical and family histories revealed that 74% of patients with variants in genes not associated with their current cancer type but which conferred a high risk for another cancer did not meet the current GT criteria for the genes harboring these variants. One or more variants of uncertain significance were identified in 57% of the patients. CONCLUSIONS Compared to targeted testing approaches, eGT can increase the yield of detection of hereditary cancer predisposition in patients with a range of tumors, allowing opportunities for enhanced surveillance and intervention. The benefits of performing eGT should be weighed against the added number of VUSs identified with this approach.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sowmya Jairam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ciyu Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yirong Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present Address: Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Present Address: Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, New York, NY, USA.
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Boehm KM, Aherne EA, Ellenson L, Nikolovski I, Alghamdi M, Vázquez-García I, Zamarin D, Long Roche K, Liu Y, Patel D, Aukerman A, Pasha A, Rose D, Selenica P, Causa Andrieu PI, Fong C, Capanu M, Reis-Filho JS, Vanguri R, Veeraraghavan H, Gangai N, Sosa R, Leung S, McPherson A, Gao J, Lakhman Y, Shah SP. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. NATURE CANCER 2022; 3:723-733. [PMID: 35764743 PMCID: PMC9239907 DOI: 10.1038/s43018-022-00388-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/27/2022] [Indexed: 04/25/2023]
Abstract
Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.
Collapse
Affiliation(s)
- Kevin M Boehm
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Emily A Aherne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora Ellenson
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ines Nikolovski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammed Alghamdi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kara Long Roche
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Druv Patel
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Aukerman
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arfath Pasha
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doori Rose
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Chris Fong
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami Vanguri
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Gangai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramon Sosa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Leung
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - JianJiong Gao
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yulia Lakhman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
20
|
Iyevleva AG, Aleksakhina SN, Sokolenko AP, Baskina SV, Venina AR, Anisimova EI, Bizin IV, Ivantsov AO, Belysheva YV, Chernyakova AP, Togo AV, Imyanitov EN. Somatic loss of the remaining allele occurs approximately in half of CHEK2-driven breast cancers and is accompanied by a border-line increase of chromosomal instability. Breast Cancer Res Treat 2022; 192:283-291. [PMID: 35020107 DOI: 10.1007/s10549-022-06517-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Germline mutations in CHEK2 gene represent the second most frequent cause of hereditary breast cancer (BC) after BRCA1/2 lesions. This study aimed to identify the molecular characteristics of CHEK2-driven BCs. METHODS Loss of heterozygosity (LOH) for the remaining CHEK2 allele was examined in 50 CHEK2-driven BCs using allele-specific PCR assays for the germline mutations and analysis of surrounding single-nucleotide polymorphisms (SNPs). Paired tumor and normal DNA samples from 25 cases were subjected to next-generation sequencing analysis. RESULTS CHEK2 LOH was detected in 28/50 (56%) BCs. LOH involved the wild-type allele in 24 BCs, mutant CHEK2 copy was deleted in 3 carcinomas, while in one case the origin of the deleted allele could not be identified. Somatic PIK3CA and TP53 mutations were present in 13/25 (52%) and 4/25 (16%) tumors, respectively. Genomic features of homologous recombination deficiency (HRD), including the HRD score ≥ 42, the predominance of BRCA-related mutational signature 3, and the high proportion of long (≥ 5 bp) indels, were observed only in 1/20 (5%) BC analyzed for chromosomal instability. Tumors with the deleted wild-type CHEK2 allele differed from LOH-negative cases by elevated HRD scores (median 23 vs. 7, p = 0.010) and higher numbers of chromosomal segments affected by copy number aberrations (p = 0.008). CONCLUSION Somatic loss of the wild-type CHEK2 allele is observed in approximately half of CHEK2-driven BCs. Tumors without CHEK2 LOH are chromosomally stable. BCs with LOH demonstrate some signs of chromosomal instability; however, its degree is significantly lower as compared to BRCA1/2-associated cancers.
Collapse
Affiliation(s)
- Aglaya G Iyevleva
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758.
| | - Svetlana N Aleksakhina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Anna P Sokolenko
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Sofia V Baskina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Aigul R Venina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | | | - Ilya V Bizin
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandr O Ivantsov
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Yana V Belysheva
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandra P Chernyakova
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandr V Togo
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758.,St.-Petersburg State Pediatric Medical University, Saint Petersburg, Russia, 194100.,I.I. Mechnikov North-Western Medical University, Saint Petersburg, Russia, 191015
| |
Collapse
|
21
|
Liu YL, Cadoo KA, Mukherjee S, Khurram A, Tkachuk K, Kemel Y, Maio A, Belhadj S, Carlo MI, Latham A, Walsh MF, Dubard-Gault ME, Wang Y, Brannon AR, Salo-Mullen E, Sheehan M, Fiala E, Devolder B, Dandiker S, Mandelker D, Zehir A, Ladanyi M, Berger MF, Solit DB, Bandlamudi C, Ravichandran V, Bajorin DF, Stadler ZK, Robson ME, Vijai J, Seshan V, Offit K. Multiple Primary Cancers in Patients Undergoing Tumor-Normal Sequencing Define Novel Associations. Cancer Epidemiol Biomarkers Prev 2021; 31:362-371. [PMID: 34810208 DOI: 10.1158/1055-9965.epi-21-0820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer survivors are developing more subsequent tumors. We sought to characterize patients with multiple (≥2) primary cancers (MPC) to assess associations and genetic mechanisms. METHODS Patients were prospectively consented (01/2013-02/2019) to tumor-normal sequencing via a custom targeted panel (MSK-IMPACT). A subset consented to return of results of ≥76 cancer predisposition genes. International Agency for Research on Cancer (IARC) 2004 rules for defining MPC were applied. Tumor pairs were created to assess relationships between cancers. Age-adjusted, sex-specific, standardized incidence ratios (SIR) for first to second cancer event combinations were calculated using SEER rates, adjusting for confounders and time of ascertainment. Associations were made with germline and somatic variants. RESULTS Of 24,241 patients, 4,340 had MPC (18%); 20% were synchronous. Most (80%) had two primaries; however, 4% had ≥4 cancers. SIR analysis found lymphoma-lung, lymphoma-uterine, breast-brain, and melanoma-lung pairs in women and prostate-mesothelioma, prostate-sarcoma, melanoma-stomach, and prostate-brain pairs in men in excess of expected after accounting for synchronous tumors, known inherited cancer syndromes, and environmental exposures. Of 1,580 (36%) patients who received germline results, 324 (21%) had 361 pathogenic/likely pathogenic variants (PV), 159 (44%) in high penetrance genes. Of tumor samples analyzed, 55% exhibited loss of heterozygosity at the germline variant. In those with negative germline findings, melanoma, prostate, and breast cancers were common. CONCLUSIONS We identified tumor pairs without known predisposing mutations that merit confirmation and will require novel strategies to elucidate genetic mechanisms of shared susceptibilities. IMPACT If verified, patients with MPC with novel phenotypes may benefit from targeted cancer surveillance.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Aliya Khurram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaitlyn Tkachuk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, Memorial Sloan Kettering New York, New York
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sami Belhadj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, Memorial Sloan Kettering New York, New York
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Marianne E Dubard-Gault
- Division of Medical Genetics in the Department of Medicine, University of Washington, Seattle, Washington
| | - Yuhan Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elise Fiala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan Devolder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sita Dandiker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Chaitanya Bandlamudi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vignesh Ravichandran
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Li N, Zethoven M, McInerny S, Devereux L, Huang YK, Thio N, Cheasley D, Gutiérrez-Enríquez S, Moles-Fernández A, Diez O, Nguyen-Dumont T, Southey MC, Hopper JL, Simard J, Dumont M, Soucy P, Meindl A, Schmutzler R, Schmidt MK, Adank MA, Andrulis IL, Hahnen E, Engel C, Lesueur F, Girard E, Neuhausen SL, Ziv E, Allen J, Easton DF, Scott RJ, Gorringe KL, James PA, Campbell IG. Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. NPJ Breast Cancer 2021; 7:52. [PMID: 33980861 PMCID: PMC8115524 DOI: 10.1038/s41523-021-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
Collapse
Affiliation(s)
- Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Lisa Devereux
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Niko Thio
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Rita Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Christoph Engel
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Elodie Girard
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Setton J, Reis-Filho JS, Powell SN. Homologous recombination deficiency: how genomic signatures are generated. Curr Opin Genet Dev 2021; 66:93-100. [PMID: 33477018 DOI: 10.1016/j.gde.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cancer genomes harbor mutational and structural rearrangements that are jointly shaped by DNA damage and repair mechanisms. Accumulating evidence suggests that genetic alterations in DNA repair-defective tumors reflect the scars caused by the use of backup DNA repair mechanisms needed to maintain cellular viability. Detailed analysis of the patterns of mutations and structural rearrangements present in BRCA1/2-deficient tumors has allowed for the delineation of genomic signatures that reflect alternative repair with inactive homologous recombination (HR). Here we aim to summarize recent advances in the analysis of genomic signatures associated with HR-deficiency and examine recent studies that have shed light on the backup repair mechanisms responsible for genomic scarring in HR-deficient tumors.
Collapse
Affiliation(s)
- Jeremy Setton
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jorge S Reis-Filho
- Dept. of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon N Powell
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Molecular Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
24
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|