1
|
Kadriya A, Forbes-Robertson S, Falah M. The Anticancer Activity of Cannabinol (CBN) and Cannabigerol (CBG) on Acute Myeloid Leukemia Cells. Molecules 2024; 29:5970. [PMID: 39770061 PMCID: PMC11676644 DOI: 10.3390/molecules29245970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions. In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects. The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS). However, the exact molecular mechanisms are still poorly understood. In addition, their effects on leukemia have scarcely been investigated. The current work aimed to assess the antileukemic effects of CBN and CBG on an acute monocytic leukemia cell line, the THP-1. THP-1 cell viability, morphology and cell cycle analyses were performed to determine potential cytotoxic, antiproliferative, and apoptotic effects of CBN and CBG. Western blotting was carried out to measure the expression of the proapoptotic p53. Both CBN and CBG inhibited cell growth and induced THP-1 cell apoptosis and cell cycle arrest in a dose- and time-dependent manner. CBN and CBG illustrated different dosage effects on THP-1 cells in the MTT assay (CBN > 40 μΜ, CBG > 1 μM) and flow cytometry (CBN > 5 μM, CBG > 40 μM), highlighting the cannabinoids' antileukemic activity. Our study hints at a direct correlation between p53 expression and CBG or CBN doses exceeding 50 μM, suggesting potential activation of p53-associated signaling pathways underlying these effects. Taken together, CBG and CBN exhibited suppressive, cell death-inducing effects on leukemia cells. However, further in-depth research will be needed to explore the molecular mechanisms driving the anticancer effects of CBN and CBG in the leukemia setting.
Collapse
Affiliation(s)
- Ahmad Kadriya
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | | | - Mizied Falah
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
2
|
Solano-Orrala D, Silva-Cullishpuma DA, Díaz-Cruces E, Gómez-López VM, Toro-Mendoza J, Gomez d'Ayala G, Troconis J, Narváez-Muñoz C, Alexis F, Mercader-Ros MT, Lucas-Abellán C, Zamora-Ledezma C. Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications. ACS APPLIED BIO MATERIALS 2024; 7:8177-8202. [PMID: 39563525 DOI: 10.1021/acsabm.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This Perspective explores the potential of nonpsychoactive cannabinoids (NPCs) such as CBD, CBG, CBC, and CBN in developing innovative biomaterials for biomedical and sports applications. It examines their physicochemical properties, anti-inflammatory, analgesic, and neuroprotective effects, and their integration into various biomaterials such as hydrogels, sponges, films, and scaffolds. It also discusses the current challenges in standardizing formulations, understanding long-term effects, and understanding their intrinsical regulatory landscapes. Further, it discusses the promising applications of NPC-loaded materials in bone regeneration, wound management, and drug delivery systems, emphasizing their improved biocompatibility, mechanical properties, and therapeutic efficacy demonstrated in vitro and in vivo. The review also addresses innovative approaches to enhance NPC delivery including the use of computational tools and explores their potential in both biomedical and sports science contexts. By providing a comprehensive overview of the current state of research, this review aims to outline future directions, emphasizing the potential of NPCs in biomaterial science and regenerative medicine.
Collapse
Affiliation(s)
- Dulexy Solano-Orrala
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| | - Dennis A Silva-Cullishpuma
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21 st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Vicente M Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Jhoan Toro-Mendoza
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Cientificas, Maracaibo 1020A, Venezuela
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Jorge Troconis
- Instituto Politécnico Nacional, ESIME-UPALM, Ciudad de Mexico 07738, México
| | - Christian Narváez-Muñoz
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas (ESPE), Sangolqui 171103, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Maria Teresa Mercader-Ros
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| |
Collapse
|
3
|
Li F, Gong H, Jia X, Gao C, Jia P, Zhao X, Chen W, Wang L, Xue N. RNAi Screen Identifies AXL Inhibition Combined with Cannabinoid WIN55212-2 as a Potential Strategy for Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1465. [PMID: 39598377 PMCID: PMC11597789 DOI: 10.3390/ph17111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background and objective: Cannabinoids are commonly used as adjuvant cancer drugs to overcome numerous adverse side effects for patients. The aim of this study was to identify the target genes that show a synergistic anti-tumor role in combination with the cannabinoid WIN55212-2 in vitro and in vivo. Methods: A human kinome RNAi library was used to screen the targeted gene that silencing plus WIN55212-2 treatment synergistically inhibited cancer cell growth in an INCELL Analyzer 2000. Cell viability, cell phase arrest and apoptosis were evaluated by MTT and flow cytometry assay. In vivo combined anti-tumor effects and regulatory mechanisms were detected in immunocompromised and immunocompetent mice. Results: Using RNAi screening, we identified the tyrosine receptor kinase AXL as a potential gene whose silencing plus WIN55212-2 treatment synergistically inhibited the proliferation of cancer cells in an INCELL Analyzer 2000. Subsequently, we demonstrated that inhibition of AXL by TP-0903 potentiated the inhibitory role of WIN55212-2 on cellular viability, colony formation and 3D tumor sphere in HCT-8 cells. Meanwhile, TP-0903 plus WIN55212-2 treatment promoted the apoptosis of HCT-8 cells. We then investigated the synergistic anti-tumor effect of TP-0903 and WIN55212-2 using colon cancer cell xenografts in immunocompromised and immunocompetent mice. The in vivo study demonstrated that combined administration of TP-0903 plus WIN55212-2 effectively reduced tumor volume and microvessel density and promoted apoptotic cells of tumor tissues in HCT-8 exogenous mice compared to either TP-0903 or WIN55212-2 treatment alone. Moreover, in addition to tumor suppression, the combination therapy of TP-0903 and WIN55212-2 induced the infiltration of cytotoxic CD8+ T cells and significantly reduced mTOR and STAT3 activation in tumor tissues of C57BL/6J mice bearing MC-38 cells. Conclusions: This study demonstrated that targeting AXL could sensitize cannabinoids to cancer therapy by interfering with tumor cells and tumor-infiltrating CD8+ T cells.
Collapse
Affiliation(s)
- Feifei Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Hang Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinfei Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Chang Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peng Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Xin Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
5
|
Mashabela MD, Kappo AP. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int J Mol Sci 2024; 25:5659. [PMID: 38891847 PMCID: PMC11171526 DOI: 10.3390/ijms25115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Cannabinoids, the bioactive compounds found in Cannabis sativa, have been used for medicinal purposes for centuries, with early discoveries dating back to the BC era (BCE). However, the increased recreational use of cannabis has led to a negative perception of its medicinal and food applications, resulting in legal restrictions in many regions worldwide. Recently, cannabinoids, notably Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have gained renewed interest in the medical field due to their anti-cancer properties. These properties include the inhibition of tumour growth and cell invasion, anti-inflammatory effects, and the induction of autophagy and apoptosis. As a result, the use of cannabinoids to treat chemotherapy-associated side effects, like nausea, vomiting, and pain, has increased, and there have been suggestions to implement the large-scale use of cannabinoids in cancer therapy. However, these compounds' cellular and molecular mechanisms of action still need to be fully understood. This review explores the recent evidence of CBD's efficacy as an anti-cancer agent, which is of interest due to its non-psychoactive properties. The current review will also provide an understanding of CBD's common cellular and molecular mechanisms in different cancers. Studies have shown that CBD's anti-cancer activity can be receptor-dependent (CB1, CB2, TRPV, and PPARs) or receptor-independent and can be induced through molecular mechanisms, such as ceramide biosynthesis, the induction of ER stress, and subsequent autophagy and apoptosis. It is projected that these molecular mechanisms will form the basis for the therapeutic applications of CBD. Therefore, it is essential to understand these mechanisms for developing and optimizing pre-clinical CBD-based therapies.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway, P.O. Box 524, Johannesburg 2006, South Africa;
| | | |
Collapse
|
6
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
7
|
Safi K, Sobieraj J, Błaszkiewicz M, Żyła J, Salata B, Dzierżanowski T. Tetrahydrocannabinol and Cannabidiol for Pain Treatment-An Update on the Evidence. Biomedicines 2024; 12:307. [PMID: 38397910 PMCID: PMC10886939 DOI: 10.3390/biomedicines12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings. The impact of cannabinoids in chronic cancer pain and in non-cancer conditions, such as multiple sclerosis and headaches, are all discussed, as well as novel techniques of administration and relevant mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Dzierżanowski
- Palliative Medicine Clinic, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| |
Collapse
|
8
|
Bappi MH, Prottay AAS, Al-Khafaji K, Akbor MS, Hossain MK, Islam MS, Asha AI, Medeiros CR, Tahim CM, Lucetti ECP, Coutinho HDM, Kamli H, Islam MT. Antiemetic effects of sclareol, possibly through 5-HT 3 and D 2 receptor interaction pathways: In-vivo and in-silico studies. Food Chem Toxicol 2023; 181:114068. [PMID: 37863383 DOI: 10.1016/j.fct.2023.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Emesis is a complex physiological phenomenon that serves as a defense against numerous toxins, stressful situations, adverse medication responses, chemotherapy, and movement. Nevertheless, preventing emesis during chemotherapy or other situations is a significant issue for researchers. Hence, the majority view contends that successfully combining therapy is the best course of action. In-vivo analysis offers a more comprehensive grasp of how compounds behave within a complex biological environment, whereas in-silico evaluation refers to the use of computational models to forecast biological interactions. OBJECTIVES The objectives of the present study were to evaluate the effects of Sclareol (SCL) on copper sulphate-induced emetic chicks and to investigate the combined effects of these compounds using a conventional co-treatment approach and in-silico study. METHODS SCL (5, 10, and 15 mg/kg) administered orally with or without pre-treatment with anti-emetic drugs (Ondansetron (ODN): 24 mg/kg, Domperidone (DOM): 80 mg/kg, Hyoscine butylbromide (HYS): 100 mg/kg, and Promethazine hydrochloride (PRO): 100 mg/kg) to illustrate the effects and the potential involvement with 5HT3, D2, M3/AChM, H1, or NK1 receptors by SCL. Furthermore, an in-silico analysis was conducted to forecast the role of these receptors in the emetic process. RESULTS The results suggest that SCL exerted a dose-dependent anti-emetic effect on the chicks. Pretreatment with SCL-10 significantly minimized the number of retches and lengthened the emesis tendency of the experimental animals. SCL-10 significantly increased the anti-emetic effects of ODN and DOM. However, compared to the ODN-treated group, (SCL-10 + ODN) group considerably (p < 0.0001) extended the latency duration (109.40 ± 1.03 s) and significantly (p < 0.01) decreased the number of retches (20.00 ± 0.70), indicating an anti-emetic effect on the test animals. In in-silico analysis, SCL exhibited promising binding affinities with suggesting receptors. CONCLUSION SCL-10 exerted an inhibitory-like effect on emetic chicks, probably through the interaction of the 5HT3 and D2 receptors. Further studies are highly appreciated to validate this study and determine the precise mechanism(s) behind the anti-emetic effects of SCL. We expect that SCL-10 may be utilized as an antiemetic treatment in a single dosage form or that it may function as a synergist with other traditional medicines.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh University of Science, Baghdad, 10081, Iraq
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Pharmacy, University of Science & Technology Chittagong, Chittagong, 4202, Bangladesh
| | - Md Shahazul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Afia Ibnath Asha
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Cassio Rocha Medeiros
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | - Catarina Martins Tahim
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato, CE, 63105-000, Brazil.
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
9
|
Samuel S, Michael M, Tadros M. Should gastroenterologists prescribe cannabis? The highs, the lows and the unknowns. World J Clin Cases 2023; 11:4210-4230. [PMID: 37449231 PMCID: PMC10336994 DOI: 10.12998/wjcc.v11.i18.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023] Open
Abstract
Cannabis, commonly known as marijuana, is a drug extracted from the Cannabis plant known for its psychotropic and medicinal properties. It has been used for healing purposes during ancient times, although its psychoactive components led to its restricted use in medicine. Nonetheless, cannabis is found to have modulatory effects on the endocannabinoid system exhibiting its medicinal role in the gastrointestinal (GI) system. Emerging animal and human studies demonstrate the influential effects of cannabis on a variety of GI diseases including inflammatory bowel disease, motility disorders and GI malignancies. It also has a regulatory role in GI symptoms including nausea and vomiting, anorexia, weight gain, abdominal pain, among others. However, both its acute and chronic use can lead to undesirable side effects such as dependency and addiction, cognitive impairment and cannabinoid hyperemesis syndrome. We will discuss the role of cannabis in the GI system as well as dosing strategies to help guide gastroenterologists to assess its efficacy and provide patient counseling before prescription of medical marijuana.
Collapse
Affiliation(s)
- Sonia Samuel
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Mark Michael
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Micheal Tadros
- Department of Gastroenterology and Hepatology, Albany Medical Center, Albany, NY 12208, United States
| |
Collapse
|
10
|
Noya-Riobó MV, Miguel CÁ, Soriano DB, Brumovsky PR, Villar MJ, Coronel MF. Changes in the expression of endocannabinoid system components in an experimental model of chemotherapy-induced peripheral neuropathic pain: Evaluation of sex-related differences. Exp Neurol 2023; 359:114232. [PMID: 36179876 DOI: 10.1016/j.expneurol.2022.114232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Chemotherapy-induced neuropathic pain is a serious clinical problem and one of the major side effects in cancer treatment. The endocannabinoid system (ECS) plays a crucial role in regulating pain neurotransmission, and changes in the expression of different components of the ECS have been reported in experimental models of persistent pain. In addition, sex differences have been observed in ECS regulation and function. The aim of our study was to evaluate whether administration of oxaliplatin, a neurotoxic antineoplastic agent, induced changes in the expression of ECS components in peripheral and central stations of the pain pathway, and if those changes exhibited sexual dimorphism. Adult male and female rats were injected with oxaliplatin or saline, and mechanical and cold hypersensitivity and allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels corresponding to cannabinoid receptors (CB1, CB2), cannabinoid-related receptors (GPR55, 5HT1A, TRPV1) and to the main enzymes involved in the synthesis (DAGL, DAGL, NAPE-PLD) and degradation (MGL, FAAH) of endocannabinoids were assessed in lumbar dorsal root ganglia (DRGs) and spinal cord by using real time RT-PCR. In addition, the levels of the main endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), were evaluated using commercial ELISA kits. Oxaliplatin administration induced the development of mechanical and cold hypersensitivity and allodynia in male and female animals. Oxaliplatin also induced early and robust changes in the expression of several components of the ECS in DRGs. A marked upregulation of CB1, CB2, 5HT1A and TRPV1 was detected in both sexes. Interestingly, while DAGL mRNA levels remained unchanged, DAGL was downregulated in male and upregulated in female rats. Finally, MGL and NAPE-PLD showed increased levels only in male animals, while FAAH resulted upregulated in both sexes. In parallel, reduced 2-AG and AEA levels were detected in DRGs from male or female rats, respectively. In the lumbar spinal cord, only TRPV1 mRNA levels were found to be upregulated in both sexes. Our results reveal previously unreported changes in the expression of cannabinoid receptors, ligands and enzymes occurring mainly in the peripheral nervous system and displaying certain sexual dimorphism. These changes may contribute to the physiopathology of oxaliplatin-induced neuropathic pain in male and female rats. A better understanding of these dynamic changes will facilitate the development of mechanism- and sex-specific approaches to optimize the use of cannabinoid-based medicines for the treatment of chemotherapy-induced pain.
Collapse
MESH Headings
- Female
- Male
- Rats
- Animals
- Endocannabinoids/metabolism
- Endocannabinoids/therapeutic use
- Sex Characteristics
- Hyperalgesia/metabolism
- Oxaliplatin/toxicity
- TRPV Cation Channels/metabolism
- Neuralgia/metabolism
- Receptors, Cannabinoid/metabolism
- Cannabinoids
- Antineoplastic Agents/toxicity
- Antineoplastic Agents/therapeutic use
- RNA, Messenger
- Models, Theoretical
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/therapeutic use
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- María Victoria Noya-Riobó
- Laboratorio de Dolor en Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Constanza Ágata Miguel
- Laboratorio de Dolor en Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Delia Beatriz Soriano
- Laboratorio de Dolor en Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Rodolfo Brumovsky
- Laboratorio de Mecanismos e Innovación Terapéutica en Dolor, Instituto de Investigaciones en Medicina Traslacional CONICET, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Marcelo José Villar
- Laboratorio de Dolor en Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María Florencia Coronel
- Laboratorio de Dolor en Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Dysgeusia in Patients with Breast Cancer Treated with Chemotherapy-A Narrative Review. Nutrients 2023; 15:nu15010226. [PMID: 36615883 PMCID: PMC9823517 DOI: 10.3390/nu15010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is the most common cancer worldwide. Chemotherapy (CT) is essential for the treatment of BC, but is often accompanied by several side effects, including taste alterations, due to different mechanisms. Although dysgeusia is usually underestimated by clinicians, it is considered very worrying and disturbing by cancer patients undergoing CT, because it induces changes in dietary choices and social habits, affecting their physical and psychological health, with a profound impact on their quality of life. Several strategies and therapies have been proposed to prevent or alleviate CT-induced dysgeusia. This review aimed to evaluate the available evidence on prevalence, pathophysiological mechanisms, clinical consequences, and strategies for managing dysgeusia in BC patients receiving CT. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASE, and the Cumulative Index to Nursing and Allied Health Literature database, performing a search strategy using database-specific keywords. We found that the literature on this topic is scarce, methodologically limited, and highly heterogeneous in terms of study design and criteria for patient inclusion, making it difficult to obtain definitive results and make recommendations for clinical practice.
Collapse
|
12
|
Nielsen SW, Hasselsteen SD, Dominiak HSH, Labudovic D, Reiter L, Dalton SO, Herrstedt J. Oral cannabidiol for prevention of acute and transient chemotherapy-induced peripheral neuropathy. Support Care Cancer 2022; 30:9441-9451. [PMID: 35933415 DOI: 10.1007/s00520-022-07312-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE To assess the safety, dosing, and preventive effects of cannabidiol (CBD) on chemotherapy-induced peripheral neuropathy (CIPN) in patients receiving oxaliplatin- or paclitaxel-based chemotherapy. METHODS Patients with cancer scheduled to undergo treatment with carboplatin and paclitaxel (Carbo-Tax) or capecitabine and oxaliplatin (CAPOX) received 150 mg CBD oil twice daily (300 mg/daily) for 8 days beginning 1 day before initiation of chemotherapy. Ten CIPN-specific patient-reported outcome (PRO) measures were captured at baseline and each day after the first cycle of chemotherapy for 8 days. Multi-frequency vibrometry (MF-V) was captured at baseline and day 4 ± 1 after initiation of chemotherapy. Controls were obtained from a similar patient cohort that did not receive CBD. Adverse events were captured using the CTCAE ver. 4.03. RESULTS From March to December 2021, 54 patients were recruited. CBD-treated patients were significantly older (p = 0.013/0.037, CAPOX/Carbo-Tax) compared to controls. Patients receiving CBD and CAPOX or Carbo-Tax showed significantly lower (better) change in Z-scores in high-frequency MF-V (125 and 250 Hz) compared to controls. This difference was most pronounced for patients receiving Carbo-Tax (- 1.76, CI-95 = [- 2.52; - 1.02] at 250 Hz). CAPOX patients treated with CBD had significantly lower peak baseline-adjusted difference in three PRO items on cold sensitivity to touch, discomfort swallowing cold liquids, and throat discomfort (- 2.08, - 2.06, and - 1.81, CI-95 = [- 3.89; - 0.12], NRS 0-10). No significant differences in PRO items were found for patients receiving Carbo-Tax. Possible side effects included stomach pain (grades 1-2) for patients receiving CAPOX. CONCLUSION CBD attenuated early symptoms of CIPN with no major safety concerns. Long-term follow-up is ongoing. Results should be confirmed in a larger, randomized study. TRIAL REGISTRATION NUMBER NCT 04,167,319 (U.S National Library of Medicine; ClinicalTrials.gov). Date of registration: November 18, 2019.
Collapse
Affiliation(s)
- Sebastian W Nielsen
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark.
| | - Simone Dyring Hasselsteen
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark
| | - Helena Sylow Heilmann Dominiak
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark
| | - Dejan Labudovic
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark
| | - Lars Reiter
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark
| | - Susanne Oksbjerg Dalton
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark.,Survivorship & Inequality in Cancer, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Jørn Herrstedt
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Vestermarksvej 9, 4000, Roskilde, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165, Copenhagen, Denmark
| |
Collapse
|
13
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|