1
|
Soni N, Ora M, Bathla G, Szekeres D, Desai A, Pillai JJ, Agarwal A. Meningioma: Molecular Updates from the 2021 World Health Organization Classification of CNS Tumors and Imaging Correlates. AJNR Am J Neuroradiol 2025; 46:240-250. [PMID: 38844366 DOI: 10.3174/ajnr.a8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 11/02/2024]
Abstract
Meningiomas, the most common primary intracranial neoplasms, account for more than one-third of primary CNS tumors. While traditionally viewed as benign, meningiomas can be associated with considerable morbidity, and specific meningioma subgroups display more aggressive behavior with higher recurrence rates. The risk stratification for recurrence has been primarily associated with the World Health Organization (WHO) histopathologic grade and extent of resection. However, a growing body of literature has highlighted the value of molecular characteristics in assessing recurrence risk. While maintaining the previous classification system, the 5th edition of the 2021 WHO Classification of Central Nervous System tumors (CNS5) book expands upon the molecular information in meningiomas to help guide management. The WHO CNS5 stratifies meningioma into 3 grades (1-3) based on histopathology criteria and molecular profile. The telomerase reverse transcriptase promoter mutations and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions now signify a grade 3 meningioma with increased recurrence risk. Tumor location also correlates with underlying mutations. Cerebral convexity and most spinal meningiomas carry a 22q deletion and/or NF2 mutations, while skull base meningiomas have AKT1, TRAF7, SMO, and/or PIK3CA mutations. MRI is the primary imaging technique for diagnosing and treatment-planning of meningiomas, while DOTATATE PET imaging offers supplementary information beyond anatomic imaging. Herein, we review the evolving molecular landscape of meningiomas, emphasizing imaging/genetic biomarkers and treatment strategies relevant to neuroradiologists.
Collapse
Affiliation(s)
- Neetu Soni
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| | - Manish Ora
- Department of Nuclear Medicine (M.O.), Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Girish Bathla
- Department of Radiology (G.B., J.P.), Mayo Clinic, Rochester, Minnesota
| | - Denes Szekeres
- University of Rochester School of Medicine and Dentistry (D.S.), Rochester, New York
| | - Amit Desai
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| | - Jay J Pillai
- Department of Radiology (G.B., J.P.), Mayo Clinic, Rochester, Minnesota
| | - Amit Agarwal
- From the Department of Radiology (N.S., J.J.P., A.D., A.A.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
2
|
Rodríguez-García AM, Esteban-Rodríguez I, Jiménez-Heffernan JA, Bárcena C, López-Muñoz S, López-Ferrer P. Cytologic features of meningioma: An analysis of common and uncommon subtypes and diagnostic difficulties during intraoperative procedures. Cytopathology 2024; 35:581-589. [PMID: 37872807 DOI: 10.1111/cyt.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Despite common histogenesis meningiomas have a wide morphologic spectrum, and the World Health Organization (WHO) recognizes 15 subtypes. They are the most common brain tumour in adults and typically have an extra-axial location. Although there have been important advances in the molecular biology of meningiomas its diagnosis is based on histopathologic features. The great majority are benign WHO grade 1 tumours. There are specific criteria for assigning WHO grade 2 and 3 that can be applied to all meningioma subtypes. Regardless of these criteria, chordoid and clear cell morphologic subtypes are considered grade 2. WHO grade 3 tumours exhibit a very high mitotic index, frank anaplasia or specific molecular abnormalities. The impressive morphologic diversity shown by meningiomas makes them a diagnostic challenge, which can be even greater in intraoperative studies. The focus of this article is to describe and illustrate their main cytologic features, with emphasis on the most infrequent subtypes.
Collapse
Affiliation(s)
| | | | | | - Carmen Bárcena
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | |
Collapse
|
3
|
Romero-Luna G, Mendez-Granda AL, Adame-Paredes R, Galvan-Salazar G, De Juambelz-Cisneros PP, Fernandez-Alvarado B, Pazos-Gómez F. Occurrence of Glioblastoma Five Years After Resection of Atypical Meningioma at the Same Anatomic Site: A Case Report. Cureus 2024; 16:e66871. [PMID: 39280441 PMCID: PMC11398610 DOI: 10.7759/cureus.66871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Atypical meningioma is a type of intermediate-grade meningioma (grade 2) according to the WHO classification. The occurrence of glioblastomas at the same site of resection of a meningioma is extremely rare and the causes of this type of mutations should be investigated. We present a case of a 54-year-old patient who five years after resection of a left parietooccipital atypical meningioma presented with a glioblastoma at the same site.
Collapse
Affiliation(s)
- Gerardo Romero-Luna
- Neurosurgery, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | | | | | | | | | | | | |
Collapse
|
4
|
Garrido Ruiz PA, Rodriguez ÁO, Corchete LA, Zelaya Huerta V, Pasco Peña A, Caballero Martínez C, González-Carreró Fojón J, Catalina Fernández I, López Duque JC, Zaldumbide Dueñas L, Mosteiro González L, Astudillo MA, Hernández-Laín A, Camacho Urkaray EN, Viguri Diaz MA, Orfao A, Tabernero MD. Paired Primary and Recurrent Rhabdoid Meningiomas: Cytogenetic Alterations, BAP1 Gene Expression Profile and Patient Outcome. BIOLOGY 2024; 13:350. [PMID: 38785832 PMCID: PMC11117813 DOI: 10.3390/biology13050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rhabdoid meningiomas (RM) are a rare meningioma subtype with a heterogeneous clinical course which is more frequently associated with recurrence, even among tumors undergoing-complete surgical removal. Here, we retrospectively analyzed the clinical-histopathological and cytogenetic features of 29 tumors, from patients with recurrent (seven primary and 14 recurrent tumors) vs. non-recurrent RM (n = 8). Recurrent RM showed one (29%), two (29%) or three (42%) recurrences. BAP1 loss of expression was found in one third of all RM at diagnosis and increased to 100% in subsequent tumor recurrences. Despite both recurrent and non-recurrent RM shared chromosome 22 losses, non-recurrent tumors more frequently displayed extensive losses of chromosome 19p (62%) and/or 19q (50%), together with gains of chromosomes 20 and 21 (38%, respectively), whereas recurrent RM (at diagnosis) displayed more complex genotypic profiles with extensive losses of chromosomes 1p, 14q, 18p, 18q (67% each) and 21p (50%), together with focal gains at chromosome 17q22 (67%). Compared to paired primary tumors, recurrent RM samples revealed additional losses at chromosomes 16q and 19p (50% each), together with gains at chromosomes 1q and 17q in most recurrent tumors (67%, each). All deceased recurrent RM patients corresponded to women with chromosome 17q gains, although no statistical significant differences were found vs. the other RM patients.
Collapse
Grants
- GRS 2315/A/21 Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain
- Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain GRS 2132/A/20
- CB16/12/00400 CIBERONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain
- FICUS-CIC donations Asociación René Rodríguez Tobar (Santa Cruz de La Palma, Canarias, Spain
Collapse
Affiliation(s)
- Patricia Alejandra Garrido Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Álvaro Otero Rodriguez
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Luis Antonio Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Victoria Zelaya Huerta
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Alejandro Pasco Peña
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Cristina Caballero Martínez
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | | | | | | | - Laura Zaldumbide Dueñas
- Pathology Service of the University Hospital Cruces, 48903 Barakaldo, Spain; (L.Z.D.); (L.M.G.)
| | | | | | - Aurelio Hernández-Laín
- Pathology Service of the University Hospital 12 Octubre, Universidad Complutense, 28041 Madrid, Spain;
| | | | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Tosefsky K, Martin KC, Rebchuk AD, Wang JZ, Nassiri F, Lum A, Zadeh G, Makarenko S, Yip S. Molecular prognostication in grade 3 meningiomas and p16/MTAP immunohistochemistry for predicting CDKN2A/B status. Neurooncol Adv 2024; 6:vdae002. [PMID: 38288091 PMCID: PMC10824160 DOI: 10.1093/noajnl/vdae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Background The World Health Organization 2021 classification introduces molecular grading criteria for anaplastic meningiomas, including TERT promoter (TERTp) mutations and CDKN2A/B homozygous deletion. Additional adverse prognostic factors include H3K27me3 and BAP1 loss. The aim of this study was to explore whether these molecular alterations stratified clinical outcomes in a single-center cohort of grade 3 meningiomas. Additionally, we examined whether p16 and MTAP immunohistochemistry can predict CDKN2A/B status. Methods Clinical and histopathological information was obtained from the electronic medical records of grade 3 meningiomas resected at a tertiary center between 2007 and 2020. Molecular testing for TERTp mutations and CDKN2A/B copy-number status, methylation profiling, and immunohistochemistry for H3K27me3, BAP1, p16, and methylthioadenosine phosphorylase (MTAP) were performed. Predictors of survival were identified by Cox regression. Results Eight of 15 cases demonstrated elevated mitotic index (≥20 mitoses per 10 consecutive high-power fields), 1 tumor exhibited BAP1 loss, 4 harbored TERTp mutations, and 3 demonstrated CDKN2A/B homozygous deletion. Meningiomas with TERTp mutations and/or CDKN2A/B homozygous deletion showed significantly reduced survival compared to anaplastic meningiomas with elevated mitotic index alone. Immunohistochemical loss of p16 and MTAP demonstrated high sensitivity (67% and 100%, respectively) and specificity (100% and 100%, respectively) for predicting CDKN2A/B status. Conclusions Molecular alterations of grade 3 meningiomas stratify clinical outcomes more so than histologic features alone. Immunohistochemical loss of p16 and MTAP show promise in predicting CDKN2A/B status.
Collapse
Affiliation(s)
- Kira Tosefsky
- MD Undergraduate Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karina Chornenka Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander D Rebchuk
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin Z Wang
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amy Lum
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Serge Makarenko
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Sakata K, Komaki S, Takeshige N, Negoto T, Kikuchi J, Kajiwara S, Orito K, Nakamura H, Hirohata M, Morioka M. Visual Outcomes and Surgical Approach Selection Focusing on Active Optic Canal Decompression and Maximum Safe Resection for Suprasellar Meningiomas. Neurol Med Chir (Tokyo) 2023; 63:381-392. [PMID: 37423756 PMCID: PMC10556211 DOI: 10.2176/jns-nmc.2021-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/17/2023] [Indexed: 07/11/2023] Open
Abstract
The goal of treating patients with suprasellar meningioma is improving or preserving visual function while achieving long-term tumor control. We retrospectively examined patient and tumor characteristics and surgical and visual outcomes in 30 patients with a suprasellar meningioma who underwent resection via an endoscopic endonasal (15 patients), sub-frontal (8 patients), or anterior interhemispheric (7 patients) approach. Approach selection was based on the presence of optic canal invasion, vascular encasement, and tumor extension. Optic canal decompression and exploration were performed as key surgical procedures. Simpson grade 1 to 3 resection was achieved in 80% of cases. Among the 26 patients with pre-existing visual dysfunction, vision at discharge improved in 18 patients (69.2%), remained unchanged in six (23.1%), and deteriorated in two (7.7%). Further gradual visual recovery and/or maintenance of useful vision were also observed during follow-up. We propose an algorithm for selecting the appropriate surgical approach to a suprasellar meningioma based on preoperative radiologic tumor characteristics. The algorithm focuses on effective optic canal decompression and maximum safe resection, possibly contributing to favorable visual outcomes.
Collapse
Affiliation(s)
- Kiyohiko Sakata
- Department of Neurosurgery, Kurume University School of Medicine
| | - Satoru Komaki
- Department of Neurosurgery, Kurume University School of Medicine
| | | | - Tetsuya Negoto
- Department of Neurosurgery, Kurume University School of Medicine
| | - Jin Kikuchi
- Department of Neurosurgery, Kurume University School of Medicine
| | - Sosho Kajiwara
- Department of Neurosurgery, Kurume University School of Medicine
| | - Kimihiko Orito
- Department of Neurosurgery, Kurume University School of Medicine
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University School of Medicine
| | - Masaru Hirohata
- Department of Neurosurgery, Kurume University School of Medicine
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine
| |
Collapse
|
7
|
Tauziède-Espariat A, Pfister SM, Mawrin C, Sahm F. Pediatric meningiomas: A literature review and diagnostic update. Neurooncol Adv 2023; 5:i105-i111. [PMID: 37287580 PMCID: PMC10243870 DOI: 10.1093/noajnl/vdac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Background Meningiomas have always represented the most frequently observed primary central nervous system (CNS) tumor in adults. Multiple advances concerning the genetic and epigenetic characterizations of adult meningiomas have been made over the last few years, and a new proposition for integrated histo-molecular grading has recently been offered in the literature. Pediatric meningiomas represent a very small proportion of all diagnosed meningiomas. New literature has determined that pediatric meningiomas are clinically, histopathologically, genetically, and epigenetically distinct from their adult counterparts. Herein, we reviewed and performed a synthesis of literature investigating pediatric meningiomas. We then compared and contrasted pediatric meningiomas with their adult counterparts. Methods We performed an extensive review of cases from English-language literature available in Pubmed using the keywords "pediatric" and "meningioma" as well as "children" and "meningioma". We reviewed and analyzed fifty-six papers that include 498 cases. Results This literature review revealed that pediatric meningiomas differ from their adult counterparts clinically (location, sex ratio) and also in terms of etiology (germline mutations), histopathology (a greater incidence of clear cell subtype), molecular biology, and epigenetics. Conclusions Pediatric meningiomas are, like other brain tumors (such as low-grade and high-grade gliomas), clinically and biologically different from their adult counterparts. Further studies are needed to better understand the tumorigenesis of pediatric meningiomas and to optimize their stratification in terms of outcome and therapeutic strategy.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France
- Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
- Division Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University Hospital, Magdeburg, Germany
- Center for Behavioral Brain Studies (CBBS), University of Magdeburg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Dincer A, Morales-Valero SF, Robert SM, Tabor JK, O'Brien J, Yalcin K, Fulbright RK, Erson-Omay Z, Dunn IF, Moliterno J. Surgical strategies for intracranial meningioma in the molecular era. J Neurooncol 2023; 162:253-265. [PMID: 37010677 PMCID: PMC10167142 DOI: 10.1007/s11060-023-04272-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION Surgical resection has long been the treatment of choice for meningiomas and is considered curative in many cases. Indeed, the extent of resection (EOR) remains a significant factor in determining disease recurrence and outcome optimization for patients undergoing surgery. Although the Simpson Grading Scale continues to be widely accepted as the measure of EOR and is used to predict symptomatic recurrence, its utility is under increasing scrutiny. The influence of surgery in the definitive management of meningioma is being re-appraised considering the rapid evolution of our understanding of the biology of meningioma. DISCUSSION Although historically considered "benign" lesions, meningioma natural history can vary greatly, behaving with unexpectedly high recurrence rates and growth which do not always behave in accordance with their WHO grade. Histologically confirmed WHO grade 1 tumors may demonstrate unexpected recurrence, malignant transformation, and aggressive behavior, underscoring the molecular complexity and heterogeneity. CONCLUSION As our understanding of the clinical predictive power of genomic and epigenomic factors matures, we here discuss the importance of surgical decision-making paradigms in the context of our rapidly evolving understanding of these molecular features.
Collapse
Affiliation(s)
- Alper Dincer
- Department of Neurosurgery, Tufts Medical Center, Boston, MA, USA
| | - Saul F Morales-Valero
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Joanna K Tabor
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Joseph O'Brien
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Kanat Yalcin
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Robert K Fulbright
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Ian F Dunn
- Department of Neurosurgery, Oklahoma University Medical Center, Oklahoma City, OK, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA.
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA.
| |
Collapse
|
9
|
Srivastava O, Plemel DJA, Tong CM, Ting A, van Landeghem FKH, Chan A. Anaplastic spheno-orbital meningioma: rapid growth after extensive exenteration. CANADIAN JOURNAL OF OPHTHALMOLOGY 2023; 58:e92-e95. [PMID: 35970263 DOI: 10.1016/j.jcjo.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/03/2022] [Accepted: 07/17/2022] [Indexed: 10/15/2022]
Affiliation(s)
| | | | - C Maya Tong
- University of Alberta, Edmonton, AB; University of Montreal, Quebec, QC
| | | | | | | |
Collapse
|
10
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
11
|
Franca RA, Della Monica R, Corvino S, Chiariotti L, Del Basso De Caro M. WHO grade and pathological markers of meningiomas: Clinical and prognostic role. Pathol Res Pract 2023; 243:154340. [PMID: 36738518 DOI: 10.1016/j.prp.2023.154340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.
Collapse
Affiliation(s)
- Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Sergio Corvino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Università di Napoli Federico II, Naples 80131, Italy.
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
12
|
Garrido Ruiz PA, González-Tablas M, Pasco Peña A, Zelaya Huerta MV, Ortiz J, Otero Á, Corchete LA, Ludeña MD, Caballero Martínez MC, Córdoba Iturriagagoitia A, Fernández IC, González-Carreró Fojón J, Hernández Laín A, Orfao A, Tabernero MD. Clinical, Histopathologic and Genetic Features of Rhabdoid Meningiomas. Int J Mol Sci 2023; 24:ijms24021116. [PMID: 36674634 PMCID: PMC9865044 DOI: 10.3390/ijms24021116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Rhabdoid meningiomas (RM) shows heterogeneous histological findings, and a wide variety of chromosomal copy number alterations (CNA) are associated with an unpredictable course of the disease. In this study, we analyzed a series of 305 RM samples from patients previously reported in the literature and 33 samples from 23 patients studied in our laboratory. Monosomy 22-involving the minimal but most common recurrent region loss of the 22q11.23 chromosomal region was the most observed chromosomal alteration, followed by losses of chromosomes 14, 1, 6, and 19, polysomies of chromosomes 17, 1q, and 20, and gains of 13q14.2, 10p13, and 21q21.2 chromosomal regions. Based on their CNA profile, RM could be classified into two genetic subgroups with distinct clinicopathologic features characterized by the presence of (1) chromosomal losses only and (2) combined losses and gains of several chromosomes. The latter displays a higher frequency of WHO grade 3 tumors and poorer clinical outcomes.
Collapse
Affiliation(s)
- Patricia Alejandra Garrido Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, Surgery Department, University of Salamancaca (USAL), Paseo de la Transición Española, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
| | - María González-Tablas
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer—CIBERONC (CB16/12/00400), Institute of Health Carlos III, C. Sinesio Delgado, 4, 28029 Madrid, Spain
| | - Alejandro Pasco Peña
- Pathology Service of the University Hospital of Pamplona, Universidad Pública de Navarra, C. de Irunlarrea, 3, 31008 Navarra, Spain
| | - María Victoria Zelaya Huerta
- Pathology Service of the University Hospital of Pamplona, Universidad Pública de Navarra, C. de Irunlarrea, 3, 31008 Navarra, Spain
| | - Javier Ortiz
- Pathology Service of the University Hospital of Salamanca, Cell Biology and Pathology Department, Paseo de la Transición Española, 37007 Salamanca, Spain
| | - Álvaro Otero
- Neurosurgery Service of the University Hospital of Salamanca, Surgery Department, University of Salamancaca (USAL), Paseo de la Transición Española, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
| | - Luis Antonio Corchete
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
| | - María Dolores Ludeña
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
- Pathology Service of the University Hospital of Salamanca, Cell Biology and Pathology Department, Paseo de la Transición Española, 37007 Salamanca, Spain
| | | | - Alicia Córdoba Iturriagagoitia
- Pathology Service of the University Hospital of Pamplona, Universidad Pública de Navarra, C. de Irunlarrea, 3, 31008 Navarra, Spain
| | | | | | - Aurelio Hernández Laín
- Pathology Service of the University Hospital 12 Octubre, Universidad Complutense, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Alberto Orfao
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer—CIBERONC (CB16/12/00400), Institute of Health Carlos III, C. Sinesio Delgado, 4, 28029 Madrid, Spain
| | - María Dolores Tabernero
- Institute for Biomedical Research of Salamanca, IBSAL University Hospital of Salamanca, Paseo de San Vicente, 58-182, 10ªPlanta, 37007 Salamanca, Spain
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer—CIBERONC (CB16/12/00400), Institute of Health Carlos III, C. Sinesio Delgado, 4, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-923-29-48-11; Fax: +34-923-29-46-24
| |
Collapse
|
13
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Wang JZ, Nassiri F, Mawrin C, Zadeh G. Genomic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:137-158. [PMID: 37432625 DOI: 10.1007/978-3-031-29750-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite being the most common primary brain tumor in adults, until recently, the genomics of meningiomas have remained quite understudied. In this chapter we will discuss the early cytogenetic and mutational changes uncovered in meningiomas, from the discovery of the loss of chromosome 22q and the neurofibromatosis-2 (NF2) gene to other non-NF2 driver mutations (KLF4, TRAF7, AKT1, SMO, etc.) discovered using next generation sequencing. We discuss each of these alterations in the context of their clinical significance and conclude the chapter by reviewing recent multiomic studies that have integrated our knowledge of these alterations together to develop novel molecular classifications for meningiomas.
Collapse
Affiliation(s)
- Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Younger DS. Spinal cord motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:3-42. [PMID: 37620076 DOI: 10.1016/b978-0-323-98817-9.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spinal cord diseases are frequently devastating due to the precipitous and often permanently debilitating nature of the deficits. Spastic or flaccid paraparesis accompanied by dermatomal and myotomal signatures complementary to the incurred deficits facilitates localization of the insult within the cord. However, laboratory studies often employing disease-specific serology, neuroradiology, neurophysiology, and cerebrospinal fluid analysis aid in the etiologic diagnosis. While many spinal cord diseases are reversible and treatable, especially when recognized early, more than ever, neuroscientists are being called to investigate endogenous mechanisms of neural plasticity. This chapter is a review of the embryology, neuroanatomy, clinical localization, evaluation, and management of adult and childhood spinal cord motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Raghunathan A, Giannini C. Histopathology of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:35-45. [PMID: 37432618 DOI: 10.1007/978-3-031-29750-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Meningiomas are considered to arise from meningothelial cells, whose cytomorphology they recapitulate. In this chapter, we review the characteristic histological features of meningioma, including classic architectural and cytological features. There exists a broad spectrum of morphological variants of meningioma. The 2021 WHO Classification recognizes nine benign (grade 1), three intermediate-grade (grade 2), and three malignant (grade 3) variants. We review the characteristic histological features of these meningioma variants, describe immunohistochemical stains, which may assist with establishing a diagnosis, and discuss differential diagnostic considerations that may prove challenging for a diagnosis of meningioma.
Collapse
Affiliation(s)
- Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Molecular classification and grading of meningioma. J Neurooncol 2023; 161:373-381. [PMID: 36802047 DOI: 10.1007/s11060-022-04228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE Meningiomas are the most common primary intracranial tumor in older adults (Ostrom et al. in Neuro Oncol 21(Suppl 5):v1-v100, 2019). Treatment is largely driven by, in addition to patient characteristics and extent of resection/Simpson grade, the World Health Organization (WHO) grading of meningiomas. The current grading scheme, based predominantly on histologic features and only limited molecular characterization of these tumors (WHO Classification of Tumours Editorial Board, in: Central nervous system tumours, International Agency for Research on Cancer, Lyon, 2021), (Mirian et al. in J Neurol Neurosurg Psychiatry 91(4):379-387, 2020), does not consistently reflect the biologic behavior of meningiomas. This leads to both under-treatment and over-treatment of patients, and hence, suboptimal outcomes (Rogers et al. in Neuro Oncol 18(4):565-574). The goal of this review is to synthesize studies to date investigating molecular features of meningiomas as they relate to patient outcomes, in order to clarify best practices in assessing and, therefore, treating meningiomas. METHODS The available literature of genomic landscape and molecular features of in meningioma was screened using PubMed. RESULTS Greater understanding of meningiomas is reached by integrating histopathology, mutational analysis, DNA copy number changes, DNA methylation profiles, and potentially additional modalities to fully capture the clinical and biologic heterogeneity of these tumors. CONCLUSION Diagnosis and classification of meningioma is best accomplished using a combination of histopathology with genomic and epigenomic factors. Future classification schemes may benefit from such an integrated approach.
Collapse
|
18
|
Malta TM, Snyder J, Noushmehr H, Castro AV. Advances in Central Nervous System Tumor Classification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:121-135. [PMID: 37432624 DOI: 10.1007/978-3-031-29750-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents. Meningiomas are heterogeneous tumors as depicted by the current 15 distinct variants defined by histology in the 2021 WHO classification, which also incorporated the first moelcular critiera for meningioma grading: homozygous loss of CDKN2A/B and TERT promoter mutation as criteria for a WHO grade 3 meningioma. The proper classification and clinical management of meningioma patients requires a multidisciplinary approach, which in addition to the information on microscopic (histology) and macroscopic (Simpson grade and imaging), should also include molecular alterations. In this chapter, we present the most up-to-date knowledge in CNS tumor classification, particularly in meningioma, in the molecular era and how it could affect their future classification and clinical management of patients with these diseases.
Collapse
Affiliation(s)
- Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - James Snyder
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.
| | | |
Collapse
|
19
|
Pediatric meningioma with a Novel MAML2-YAP1 fusion variant: a case report and literature review. BMC Pediatr 2022; 22:694. [PMID: 36463108 PMCID: PMC9719181 DOI: 10.1186/s12887-022-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pediatric meningioma with YAP1 fusion is a rare subset of meningiomas. Currently, there are lack of integrated clinical, radiological, and pathological features on this subset. Here, we reported a case of pediatric meningioma with a novel MAML2-YAP1 fusion variant and reviewed the relevant literature. CASE PRESENTATION We presented a case of 12-year-old boy with meningioma adjacent to the superior sagittal sinus and falx. Simpson grade II gross total resection was performed after diagnosis. Pathologically, he was diagnosed as WHO grade I meningothelial meningioma with rhabdoid features. A next-generation sequencing-based gene panel was performed to determine the molecular features for potential treatment, and a novel MAML2-YAP1 fusion break point was identified. CONCLUSION Pediatric meningioma with the fusion of YAP1 and MAML2 genes is more likely to have pathological features of rhabdiod cells, which needs to be validated in large-scale studies for exploring better treatment under the integrated diagnosis.
Collapse
|
20
|
Jamshidi P, Brat DJ. The 2021 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 2022; 35:764-771. [PMID: 36226717 PMCID: PMC9669114 DOI: 10.1097/wco.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The recently published WHO Classification of Tumours, Central Nervous System Tumours, Fifth Edition (WHO CNS-5) introduces substantial clinically relevant changes based on improved understanding of the molecular underpinnings of brain tumor types as biological entities. This review highlights pertinent changes for practicing neurologists. RECENT FINDINGS Diffuse gliomas are now divided into adult and pediatric types. Adult types are greatly simplified, being classified into three groups based on IDH and 1p/19q status, with molecular grading criteria now included. Pediatric types are divided into low-grade or high-grade and further classified based on molecular features corresponding to clinical behavior. While still recognizing previous morphological subtypes, meningioma is now a single tumor type, with greatly advanced correlations between molecular alterations, locations, morphologic subtypes, and grades. For the first time, ependymomas are classified based on integration of anatomical location, histopathology, and molecular alterations. Importantly, WHO CNS-5 includes a number of new tumor types that have similar clinicopathologic features and are grouped together by their distinctive molecular characteristics. SUMMARY The classification of CNS tumors according to objective, reproducible molecular genetic alterations, provides greater opportunity for neurologists to offer individualized treatment options, enroll homogenous patient populations into clinical trials, and ultimately discover novel therapeutics.
Collapse
Affiliation(s)
- Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
22
|
Ng HK, Li KKW, Chung NYF, Chan JYT, Poon MFM, Wong QHW, Kwan JSH, Poon WS, Chen H, Chan DTM, Shi ZF, Mao Y. Molecular landscapes of longitudinal NF2/22q and non-NF2/22q meningiomas show different life histories. Brain Pathol 2022; 33:e13120. [PMID: 36167400 PMCID: PMC10154375 DOI: 10.1111/bpa.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Recurrence is a major complication of some meningiomas. Although there were many studies on biomarkers associated with higher grades or increased aggressiveness, few studies specifically examined longitudinal samples of primary meningiomas and recurrences from the same patients for molecular life history. We studied 99 primary and recurrent meningiomas from 42 patients by FISH for 22q, 1q, 1p, 3p, 5q, 6q, 10p, 10q, 14q, 18q, CDKN2A/B homozygous deletion, ALT (Alternative Lengthening of Telomere), TERT re-arrangement, targeted sequencing and TERTp sequencing. Although NF2 mutation and 22q were well known to be aetiological events in meningiomas, we found that in these paired meningiomas, combining the two events resulted in an NF2/22q group (57 tumors from 25 patients) which were almost mutually exclusive with those cases without these two changes (42 tumors from 17 patients) for NF2/22q. No other molecular changes were totally unique to NF2/22q or non-NF2/22q tumors. For molecular evolution, NF2/22q meningiomas had higher cytogenetic abnormalities than non-NF2/22q meningiomas (p = 0.003). Most of the cytogenetic changes in NF2/22q meningiomas were present from the outset whereas for non-NF2/22q meningiomas, cytogenetic events were uncommon in the primary tumors and most were acquired in recurrences. For non-NF2/22q tumors, CDKN2A/B homozygous deletion, 1q gain, 18p loss, 3p loss, and ALT were preferentially found in recurrences. Mutations were largely conserved between primary and recurrent tumors. Phylogenetic trees showed 11/11 patients with multiple recurrent tumors had a conserved evolutionary pattern. We conclude that for molecular life history, NF2 and 22q should be regarded as a group. NF2/22q recurring meningiomas showed more cytogenetic abnormalities in the primary tumors, whereas non-NF2/22q meningiomas showed CDKN2A/B deletion and other cytogenetic abnormalities and ALT at recurrences. Although chromosome 1p loss is a known poor prognostic marker in meningiomas, it was also associated with a shorter TBR (time between resection) in this cohort (p = 0.002).
Collapse
Affiliation(s)
- Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Janice Yuen-Tung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Manix Fung-Man Poon
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Queenie Hoi-Wing Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Hong Kong, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Diagnostic and Therapeutic Strategy in Anaplastic (Malignant) Meningioma, CNS WHO Grade 3. Cancers (Basel) 2022; 14:cancers14194689. [PMID: 36230612 PMCID: PMC9562197 DOI: 10.3390/cancers14194689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Only 1% of all meningioma diagnosis is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. In this review, we investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments. Abstract Background: Meningiomas are the most common primary central nervous system malignancies accounting for 36% of all intracranial tumors. However, only 1% of meningioma is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. Methods: We carried out a narrative review aimed to investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Results: The most frequent genetic alteration occurring in meningioma is the inactivation in the neurofibromatosis 2 genes (merlin). The accumulation of copy number losses, including 1p, 6p/q, 10q, 14q, and 18p/q, and less frequently 2p/q, 3p, 4p/q, 7p, 8p/q, and 9p, compatible with instability, is restricted to NF2 mutated meningioma. Surgery and different RT approaches represent the milestone of grade 3 meningioma management, while there is a marginal role of systemic therapy. Conclusions: Anaplastic meningiomas are rare tumors, and diagnosis should be suspected and confirmed by trained radiologists and pathologists. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments.
Collapse
|
24
|
Prajapati HP, Kannaujia SK. A simplified overview of the World Health Organization classification of central nervous system tumors 2021. Surg Neurol Int 2022; 13:252. [PMID: 35855126 PMCID: PMC9282774 DOI: 10.25259/sni_102_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Building on the 2016 updated fourth edition and the work of consortium to inform molecular and practical approach to CNS tumor taxonomy, the major dramatic change occurs in 2021 fifth edition by advancing the role of molecular diagnostics in CNS tumor classification. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category.
Methods:
The review was designed in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Articles published in PubMed Central, Medline, and Embase databases till now were all searched. Only nonexperimental and nonanimal clinical studies were included in the study. Articles written only in the English language were considered.
Results:
All IDH mutant diffuse astrocytic tumors are considered in a single type “astrocytoma IDH mutant” and then graded as CNS WHO Grades 2–4. Pediatric-type diffuse gliomas are now classified as separate entity. Anatomical site is also taken into consideration to classify ependymoma. The “Desmoplastic myxoid tumor of the pineal region, SMARCB1 mutant” and “Atypical neurofibromatous neoplasm of unknown biological potential” are new tumor type added to pineal and neurofibroma group, respectively. Mesenchymal tumor is now termed as only solitary fibrous tumor. Adamantinomatous and papillary subtype of craniopharyngioma are now classified as distinct tumor type. The new term “Pituitary neuroendocrine tumor” has been coined for pituitary adenoma.
Conclusion:
The WHO CNS-5 introduces a new knowledge into the classification with progressive manner by introducing newly recognizing entities, by obsoleting tumor type, and by adjusting the taxonomic structure.
Collapse
Affiliation(s)
- Hanuman Prasad Prajapati
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| | - Sanjay Kumar Kannaujia
- Department of Pathology, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| |
Collapse
|
25
|
Tabaran AF, Armien AG, Pluhar GE, O’Sullivan MG. Meningioma with rhabdoid features: Pathologic findings in dogs. Vet Pathol 2022; 59:759-767. [DOI: 10.1177/03009858221100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhabdoid meningioma is a rare type of meningeal neoplasm in humans. This study reports the clinical, pathological, and ultrastructural features of 4 cases of canine meningioma with rhabdoid features. The cases were female and 8 to 12 years of age. Biopsies from complete surgical resections were examined for all cases. The whole brain with tumor recurrence was collected at necropsy in 2 dogs. Histologically, the tumors consisted of discohesive sheets of oval-polygonal cells with abundant eosinophilic cytoplasm and occasional paranuclear hyaline-like inclusions. Cells were intensely immunopositive for vimentin, negative for melan A and S100 protein in all cases, and showed variable immunolabeling for cytokeratin in 2 cases. Focal glial fibrillary acidic protein (GFAP)-immunopositive cells were present in 1 case. Ultrastructurally, the rhabdoid cells in case 1 contained prominent cytoplasmic whorls of intermediate filaments, recapitulating the ultrastructural features of rhabdoid meningioma in humans. In cases 2 and 3, the meningioma cells contained interdigitating cell processes folded in a maze-like fashion resembling rhabdoid-like meningioma in humans. In case 4, the voluminous cytoplasm contained many round-to-flattened mitochondria admixed with rough endoplasmic reticulum, indicating a predominant oncocytic differentiation and not the rhabdoid differentiation suggested by light microscopy. Thus, rhabdoid morphology occurs in different types of meningiomas, and ultrastructural findings are essential for a correct diagnosis.
Collapse
Affiliation(s)
- Alexandru-Flaviu Tabaran
- University of Minnesota, St. Paul, MN
- University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Anibal G. Armien
- University of Minnesota, St. Paul, MN
- University of California, Davis, Davis, CA
| | | | | |
Collapse
|
26
|
Pellerino A, Bruno F, Palmiero R, Pronello E, Bertero L, Soffietti R, Rudà R. Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers (Basel) 2022; 14:2256. [PMID: 35565385 PMCID: PMC9100910 DOI: 10.3390/cancers14092256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Meningiomas are common intracranial tumors that can be treated successfully in most cases with surgical resection and/or adjuvant radiotherapy. However, approximately 20% of patients show an aggressive clinical course with tumor recurrence or progressive disease, resulting in significant morbidity and increased mortality. Despite several studies that have investigated different cytotoxic agents in aggressive meningiomas in the past several years, limited evidence of efficacy and clinical benefit has been reported thus far. Novel molecular alterations have been linked to a particular clinicopathological phenotype and have been correlated with grading, location, and prognosis of meningiomas. In this regard, SMO, AKT, and PIK3CA mutations are typical of anterior skull base meningiomas, whereas KLF4 mutations are specific for secretory histology, and BAP1 alterations are common in progressive rhabdoid meningiomas. Alterations in TERT, DMD, and BAP1 correlate with poor outcomes. Moreover, some actionable mutations, including SMO, AKT1, and PIK3CA, regulate meningioma growth and are under investigation in clinical trials. PD-L1 and/or M2 macrophage expression in the microenvironment provides evidence for the investigation of immunotherapy in progressive meningiomas.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Francesco Bruno
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Rosa Palmiero
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Edoardo Pronello
- Department of Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
27
|
Bi WL, Santagata S. Skull Base Tumors: Neuropathology and Clinical Implications. Neurosurgery 2022; 90:243-261. [PMID: 34164689 DOI: 10.1093/neuros/nyab209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumors that arise in and around the skull base comprise a wide range of common and rare entities. Recent studies have advanced our understanding of their pathogenesis, which in some cases, have significantly influenced clinical practice. The genotype of meningiomas is strongly associated with their phenotype, including histologic subtype and tumor location, and clinical outcome. A single molecular alteration, NAB2-STAT6 fusion, has redefined the category of solitary fibrous tumors to include the previous entity hemangiopericytomas. Schwannomas, both sporadic and familial, are characterized by near ubiquitous alterations in NF2 , with additional mutations in SMARCB1 or LZTR1 in schwannomatosis. In pituitary adenohypophyseal tumors, cell lineage transcription factors such as SF-1, T-PIT, and PIT-1 are now essential for classification, providing a more rigorous taxonomy for tumors that were previously considered null cell adenomas. The pituicyte lineage transcription factor TTF-1 defines neurohypophyseal tumors, which may represent a single nosological entity with a spectrum of morphologic manifestations (ie, granular cell tumor, pituicytoma, and spindle cell oncocytoma). Likewise, the notochord cell lineage transcription factor brachyury defines chordoma, discriminating them from chondrosarcomas. The identification of nonoverlapping genetic drivers of adamantinomatous craniopharyngiomas and papillary craniopharyngiomas indicates that these are distinct tumor entities and has led to successful targeted treatment of papillary craniopharyngiomas using BRAF and/or mitogen-activated protein kinase inhibitors. Similarly, dramatic therapeutic responses have been achieved in patients with Langerhans cell histiocytosis, both with BRAF -mutant and BRAF -wildtype tumors. Familiarity with the pathology of skull base tumors, their natural history, and molecular features is essential for optimizing patient care.
Collapse
Affiliation(s)
- Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
- Laboratory of Systems Pharmacology, Harvard Medical School , Boston , Massachusetts , USA
- Ludwig Center at Harvard, Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
28
|
Agarwal P, Gupta N, Srivastava A, Kumar M, Kumar S, Srivastava C. Anaplastic Intraventricular Meningioma with Rhabdoid Features: An Unusual Tumor with Usual Clinical Presentation. CLINICAL PATHOLOGY 2022; 15:2632010X221115157. [PMID: 35923857 PMCID: PMC9340328 DOI: 10.1177/2632010x221115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 12/07/2022]
Abstract
Meningiomas are tumors arising from leptomeninges. Malignant counterpart of them is known
as anaplastic meningioma which are WHO grade III tumors. Intraventricular location of
these tumors is rare and is clinic-radiologically challenging. Histopathology and
immunohistochemistry are confirmatory. We present case of a 27-year-old girl, who
presented with usual symptoms of intraventricular mass in emergency. After shunt surgery,
clinical diagnosis of ependymoma was formed with differential of high-grade glioma. Squash
tissue was difficult to crush displaying tight clusters of spindle cells with necrosis in
background. Definitive histology revealed high grade spindle cell neoplasm disposed in
sheets with brisk and atypical mitosis. Only focal whorling pattern was seen. Large cells
with eccentric cytoplasm, reminiscent of rhabdoid cells were also seen.
Immunohistochemistry was positive for vimentin and EMA, negative for GFAP. Final diagnosis
of Anaplastic meningioma was dispatched. The histological pattern of the present case,
young age of presentation and presence of Rhabdoid cells make it unusual. Though rare but
intraventricular meningiomas must also be kept in clinical radiological differentials
apart from the usual ependymoma at this location.
Collapse
Affiliation(s)
- Preeti Agarwal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Nancy Gupta
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Alok Srivastava
- Department of Neurosurgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Kumar
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Suarabh Kumar
- Department of Radiodiagnosis, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
29
|
Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathol 2021; 142:873-886. [PMID: 34495383 PMCID: PMC8500891 DOI: 10.1007/s00401-021-02351-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
In contrast to adults, meningiomas are uncommon tumors in childhood and adolescence. Whether adult and pediatric meningiomas differ on a molecular level is unclear. Here we report detailed genomic analyses of 37 pediatric meningiomas by sequencing and DNA methylation profiling. Histologically, the series was dominated by meningioma subtypes with aggressive behavior, with 70% of patients suffering from WHO grade II or III meningiomas. The most frequent cytogenetic aberrations were loss of chromosomes 22 (23/37 [62%]), 1 (9/37 [24%]), 18 (7/37 [19%]), and 14 (5/37 [14%]). Tumors with NF2 alterations exhibited overall increased chromosomal instability. Unsupervised clustering of DNA methylation profiles revealed separation into three groups: designated group 1 composed of clear cell and papillary meningiomas, whereas group 2A comprised predominantly atypical meningiomas and group 2B enriched for rare high-grade subtypes (rhabdoid, chordoid). Meningiomas from NF2 patients clustered exclusively within groups 1 and 2A. When compared with a dataset of 105 adult meningiomas, the pediatric meningiomas largely grouped separately. Targeted panel DNA sequencing of 34 tumors revealed frequent NF2 alterations, while other typical alterations found in adult non-NF2 tumors were absent. These data demonstrate that pediatric meningiomas are characterized by molecular features distinct from adult tumors.
Collapse
|
30
|
Takata S, Tamase A, Hayashi Y, Tachibana O, Sato K, Iizuka H. Pediatric meningioma with rhabdoid features developed at the site of skull fracture: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21107. [PMID: 36131573 PMCID: PMC9563953 DOI: 10.3171/case21107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/28/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pediatric meningiomas are rare, and only a few cases attributed to trauma and characterized by development at the site of bone fracture have been reported. Both pediatric and traumatic meningiomas have aggressive characteristics. OBSERVATIONS An 11-year-old boy who sustained a head injury resulting from a left frontal skull fracture 8 years previously experienced a convulsive attack. Imaging revealed a meningioma in the left frontal convexity. Total removal of the tumor with a hyperostotic section was successfully achieved. Intraoperative investigation showed tumor invasion into the adjacent frontal cortex. Histologically, the surgical specimen revealed a transitional meningioma with brain invasion and a small cluster of rhabdoid cells. This led to a final pathological diagnosis of an atypical meningioma with rhabdoid features. The postoperative course was uneventful, and no recurrence of the tumor was found after 2 years without adjuvant therapy. LESSONS This is the first report of a pediatric meningioma with rhabdoid features occurring at the site of a skull fracture. Meningiomas that contain rhabdoid cells without malignant features are not considered to be as aggressive as rhabdoid meningiomas. However, the clinical course must be carefully observed for possible long-term tumor recurrence.
Collapse
Affiliation(s)
- Sho Takata
- Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan; and
| | - Akira Tamase
- Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan; and
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan; and
| | - Osamu Tachibana
- Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan; and
| | - Katsuaki Sato
- Department of Diagnostic Pathology, Noto General Hospital, Ishikawa, Japan
| | - Hideaki Iizuka
- Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan; and
| |
Collapse
|
31
|
Pawloski JA, Fadel HA, Huang YW, Lee IY. Genomic Biomarkers of Meningioma: A Focused Review. Int J Mol Sci 2021; 22:ijms221910222. [PMID: 34638590 PMCID: PMC8508805 DOI: 10.3390/ijms221910222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 01/11/2023] Open
Abstract
Meningiomas represent a phenotypically and genetically diverse group of tumors which often behave in ways that are not simply explained by their pathologic grade. The genetic landscape of meningiomas has become a target of investigation as tumor genomics have been found to impact tumor location, recurrence risk, and malignant potential. Additionally, targeted therapies are being developed that in the future may provide patients with personalized chemotherapy based on the genetic aberrations within their tumor. This review focuses on the most common genetic mutations found in meningiomas of all grades, with an emphasis on the impact on tumor location and clinically relevant tumor characteristics. NF-2 and the non-NF-2 family of genetic mutations are summarized in the context of low-grade and high-grade tumors, followed by a comprehensive discussion regarding the genetic and embryologic basis for meningioma location and phenotypic heterogeneity. Finally, targeted therapies based on tumor genomics currently in use and under investigation are reviewed and future avenues for research are suggested. The field of meningioma genomics has broad implications on the way meningiomas will be treated in the future, and is gradually shifting the way clinicians approach this diverse group of tumors.
Collapse
Affiliation(s)
- Jacob A. Pawloski
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA; (H.A.F.); (Y.-W.H.); (I.Y.L.)
- Department of Neurological Surgery, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
- Correspondence: ; Tel.: +1-313-932-3197
| | - Hassan A. Fadel
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA; (H.A.F.); (Y.-W.H.); (I.Y.L.)
| | - Yi-Wen Huang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA; (H.A.F.); (Y.-W.H.); (I.Y.L.)
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA; (H.A.F.); (Y.-W.H.); (I.Y.L.)
| |
Collapse
|
32
|
Atypical Presentation of Transcranial Extension of Intracranial Meningiomas. Am J Dermatopathol 2021; 44:207-211. [DOI: 10.1097/dad.0000000000002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Prasad RN, Gardner UG, Yaney A, Prevedello DM, Koboldt DC, Thomas DL, Mardis ER, Palmer JD. Germline BAP1 Mutation in a Family With Multi-Generational Meningioma With Rhabdoid Features: A Case Series and Literature Review. Front Oncol 2021; 11:721712. [PMID: 34504799 PMCID: PMC8421801 DOI: 10.3389/fonc.2021.721712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Meningioma is the most common primary brain tumor, and recurrence risk increases with increasing WHO Grade from I to III. Rhabdoid meningiomas are a subset of WHO Grade III tumors with rhabdoid cells, a high proliferation index, and other malignant features that follow an aggressive clinical course. Some meningiomas with rhabdoid features either only focally or without other malignant features are classified as lower grade yet still recur early. Recently, inactivating mutations in the tumor suppressor gene BAP1 have been associated with poorer prognosis in rhabdoid meningioma and meningioma with rhabdoid features, and germline mutations have been linked to a hereditary tumor predisposition syndrome (TPDS) predisposing patients primarily to melanoma and mesothelioma. We present the first report of a familial BAP1 inactivating mutation identified after multiple generations of a family presented with meningiomas with rhabdoid features instead of with previously described BAP1 loss-associated malignancies. A 24-year-old female presented with a Grade II meningioma with rhabdoid and papillary features treated with subtotal resection, adjuvant external beam radiation therapy, and salvage gamma knife radiosurgery six years later. Around that time, her mother presented with a meningioma with rhabdoid and papillary features managed with resection and adjuvant radiation therapy. Germline testing was positive for a pathogenic BAP1 mutation in both patients. Sequencing of both tumors demonstrated biallelic BAP1 inactivation via the combination of germline BAP1 mutation and either loss of heterozygosity or somatic mutation. No additional mutations implicated in oncogenesis were noted from either patient's germline or tumor sequencing, suggesting that the inactivation of BAP1 was responsible for pathogenesis. These cases demonstrate the importance of routine BAP1 tumor testing in meningioma with rhabdoid features regardless of grade, germline testing for patients with BAP1 inactivated tumors, and tailored cancer screening in this population.
Collapse
Affiliation(s)
- Rahul N Prasad
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Ulysses G Gardner
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Alexander Yaney
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Daniel M Prevedello
- Department of Neurosurgery, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Diana L Thomas
- Department of Pathology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
34
|
Driver J, Hoffman SE, Tavakol S, Woodward E, Maury EA, Bhave V, Greenwald NF, Nassiri F, Aldape K, Zadeh G, Choudhury A, Vasudevan HN, Magill ST, Raleigh DR, Abedalthagafi M, Aizer AA, Alexander BM, Ligon KL, Reardon DA, Wen PY, Al-Mefty O, Ligon AH, Dubuc AM, Beroukhim R, Claus EB, Dunn IF, Santagata S, Bi WL. A Molecularly Integrated Grade for Meningioma. Neuro Oncol 2021; 24:796-808. [PMID: 34508644 PMCID: PMC9071299 DOI: 10.1093/neuonc/noab213] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Meningiomas are the most common primary intracranial tumor in adults. Clinical care is currently guided by the World Health Organization (WHO) grade assigned to meningiomas, a 3-tiered grading system based on histopathology features, as well as extent of surgical resection. Clinical behavior, however, often fails to conform to the WHO grade. Additional prognostic information is needed to optimize patient management. Methods We evaluated whether chromosomal copy-number data improved prediction of time-to-recurrence for patients with meningioma who were treated with surgery, relative to the WHO schema. The models were developed using Cox proportional hazards, random survival forest, and gradient boosting in a discovery cohort of 527 meningioma patients and validated in 2 independent cohorts of 172 meningioma patients characterized by orthogonal genomic platforms. Results We developed a 3-tiered grading scheme (Integrated Grades 1-3), which incorporated mitotic count and loss of chromosome 1p, 3p, 4, 6, 10, 14q, 18, 19, or CDKN2A. 32% of meningiomas reclassified to either a lower-risk or higher-risk Integrated Grade compared to their assigned WHO grade. The Integrated Grade more accurately identified meningioma patients at risk for recurrence, relative to the WHO grade, as determined by time-dependent area under the curve, average precision, and the Brier score. Conclusion We propose a molecularly integrated grading scheme for meningiomas that significantly improves upon the current WHO grading system in prediction of progression-free survival. This framework can be broadly adopted by clinicians with relative ease using widely available genomic technologies and presents an advance in the care of meningioma patients.
Collapse
Affiliation(s)
- Joseph Driver
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Samantha E Hoffman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Harvard-MIT Program in Health Science Technology, MD-PhD Program, Harvard Medical School, Boston, MA
| | - Sherwin Tavakol
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Eleanor Woodward
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Eduardo A Maury
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Harvard-MIT Program in Health Science Technology, MD-PhD Program, Harvard Medical School, Boston, MA.,Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Farshad Nassiri
- Department of Neurosurgery, University of Toronto, Toronto, ON
| | | | - Gelareh Zadeh
- Department of Neurosurgery, University of Toronto, Toronto, ON
| | - Abrar Choudhury
- Departments of Radiation Oncology and Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Harish N Vasudevan
- Departments of Radiation Oncology and Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Stephen T Magill
- Departments of Radiation Oncology and Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - David R Raleigh
- Departments of Radiation Oncology and Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Malak Abedalthagafi
- King Fahad Medical City and King Abdulaziz City for Science and Technology, As Sulimaniyah, Riyadh, Saudi Arabia
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brian M Alexander
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ossama Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Azra H Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elizabeth B Claus
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Yale School of Public Health, New Haven, CT
| | - Ian F Dunn
- Department of Neurosurgery, Oklahoma University Medical Center, Oklahoma City, OK
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
35
|
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021; 23:1231-1251. [PMID: 34185076 PMCID: PMC8328013 DOI: 10.1093/neuonc/noab106] [Citation(s) in RCA: 5542] [Impact Index Per Article: 1385.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
Collapse
Affiliation(s)
- David N Louis
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Dominique Figarella-Branger
- Service d’Anatomie Pathologique et de Neuropathologie, APHM, CNRS, Institut de Neurophysiopathologie, Hôpital de la Timone, Aix-Marseille University, Marseille, France
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - H K Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Stefan M Pfister
- Hopp Children’s Cancer Center at the NCT Heidelberg (KiTZ), Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, and German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Riccardo Soffietti
- Department of Neurology and Neuro-Oncology, University of Turin Medical School, Turin, Italy
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
36
|
Birua GJS, Sadashiva N, Konar S, Rao S, Shukla D, Krishna U, Saini J, Santosh V. Rhabdoid meningiomas: Clinicopathological analysis of a rare variant of meningioma. Clin Neurol Neurosurg 2021; 207:106778. [PMID: 34214868 DOI: 10.1016/j.clineuro.2021.106778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Rhabdoid Meningiomas (RM) are rare malignant type of meningiomas, classified as grade III in the WHO classification. Only a few case series have been reported, and factors affecting prognosis are still unclear. METHODS We did a retrospective chart review of all the RMs diagnosed in our institute between 2007 and 2019. Demographic profile, clinical status, imaging, surgical procedures used, post-operative course, adjuvant therapy and follow-ups were reviewed. Histopathological slides were also reviewed. RESULTS There were 11 patients with RM who underwent 17 surgical procedures between them. Median age was 26 years. On imaging, four had lesions in skull base, three in convexity and four in parasagittal region. Five patients had lesions which had bled and two had leptomeningeal dissemination. Two patients underwent Simpson's grade 1 excision, seven underwent grade 2 and one patient each underwent grade 3 and 5 excisions. One patient presented with poor sensorium and underwent surgery but ultimately succumbed. All reported patients had Rhabdoid features (>50%). Features of anaplasia were seen in four cases and atypical meningioma in others. The median progression-free-survival and overall survival was 6 months and 9 months, respectively. Female gender (n = 5; p = 0.032) and patients who received radiotherapy (p = 0.030) had a survival advantage. Location of the tumor (p = 0.43), presence of hemorrhage in the lesion (p = 0.49), grade of excision (p = 0.40) and WHO pathological grade (p = 0.11) did not have a statistically significant survival benefit. CONCLUSION Female gender and adjuvant radiotherapy were associated with survival advantage in our sample. Large studies are required to establish the factors associated with survival.
Collapse
Affiliation(s)
- Gyani Jail Singh Birua
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Subhas Konar
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Uday Krishna
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India.
| | - Jitender Saini
- Department of Neuroradiology and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| |
Collapse
|
37
|
Vizcaino MA, Giannini C, Chang HT, Kipp BR, Fritchie K, Vaubel R. Intracranial angiomatoid fibrous histiocytoma with rhabdoid features: a mimic of rhabdoid meningioma. Brain Tumor Pathol 2021; 38:138-144. [PMID: 33432531 DOI: 10.1007/s10014-020-00389-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Angiomatoid fibrous histiocytoma (AFH) is an uncommon soft-tissue neoplasm that arises mostly in the extremities of young people and generally carries a good prognosis. Intracranial location is unusual and frequently associated with myxoid change. EWSR1 gene fusions with members of the CREB family (CREB1, ATF1, and CREM) are well-established events in AFH. These fusions have also been described in other neoplasms including intracranial myxoid mesenchymal tumor, and it is still uncertain whether the latter is a distinct entity or if it represents a myxoid variant of AFH. Here, we describe a rare falcine AFH presenting in a 50-year-old woman. The most striking feature of this tumor was its diffuse rhabdoid morphology with focal high mitotic activity, raising the consideration of rhabdoid meningioma (WHO grade III). The tumor cells were moderately positive for EMA and negative for progesterone receptor and SSTR2 prompting additional studies. Desmin was strongly positive and CD99 showed membranous immunoreactivity. BAP1, INI-1, and BRG1 expressions were retained. Next-generation sequencing analysis demonstrated an EWSR1-ATF1 gene fusion, supporting the diagnosis of an unusual rhabdoid variant of AFH. After gross total resection of this tumor, the patient remains free of disease 5 months after the surgery without additional treatment.
Collapse
Affiliation(s)
- M Adelita Vizcaino
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 1st St SW, Rochester, MN, 55905, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 1st St SW, Rochester, MN, 55905, USA
| | - Howard T Chang
- Department of Pathology, Sparrow Hospital, Lansing, 1215 E Michigan Ave, Lansing, MI, 48912, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 1st St SW, Rochester, MN, 55905, USA
| | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 1st St SW, Rochester, MN, 55905, USA
| | - Rachael Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
38
|
Gauchotte G, Peyre M, Pouget C, Cazals-Hatem D, Polivka M, Rech F, Varlet P, Loiseau H, Lacomme S, Mokhtari K, Kalamarides M, Bielle F. Prognostic Value of Histopathological Features and Loss of H3K27me3 Immunolabeling in Anaplastic Meningioma: A Multicenter Retrospective Study. J Neuropathol Exp Neurol 2020; 79:754-762. [PMID: 32447376 DOI: 10.1093/jnen/nlaa038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The diagnosis of anaplastic meningioma (AM) (WHO grade III) is based on the presence of a high mitotic index (MI) and/or overt anaplasia. Only few data exist about the reproducibility and prognostic value of overt anaplasia. Additionally, the prognostic value of H3K27me3 loss in AM has not yet been demonstrated. Our objectives were to evaluate the reproducibility and prognostic value of WHO criteria and H3K27me3 loss in a multicenter series of 66 AM. Interobserver reproducibility was good for the determination of WHO grade (Kappa = 0.671) and MI (intraclass correlation coefficient [ICC] = 0.649), and fair for assessment of overt anaplasia (Kappa = 0.366). Patients with meningiomas showing high MI had significantly shorter overall survival (OS) than patients with meningiomas showing overt anaplasia without high MI (p = 0.009). OS was significantly lower in case of overt anaplasia with low MI (<20/1.6 mm2) than in atypical meningiomas (p = 0.008). H3K27me3 loss was present in 10/47 (21%) of AM and independently associated with shorter OS (p = 0.036; Cox multivariate analysis), with a good reproducibility (Kappa = 0.643). In conclusion, the presence of overt anaplasia could give additional prognostic information in tumors lacking high MI. Finally, loss of H3K27me3 is an easy-to-use and reproducible marker of poorer prognosis.
Collapse
Affiliation(s)
- Guillaume Gauchotte
- INSERM U1256, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy.,Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035 (GG, SL), CHRU, Nancy, France
| | - Matthieu Peyre
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,Department of Neurosurgery, Groupe Hospitalier Pitié Salpêtrière, AP-HP (MP, MK), Paris, France.,Department of Pathology, Hôpital Lariboisière, AP-HP, Paris, France
| | - Celso Pouget
- INSERM U1256, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy.,Department of Pathology, CHRU, Nancy, France
| | | | | | - Fabien Rech
- Department of Neurosurgery, CHRU, Nancy, France.,Institut des Neurosciences, INSERM U1051, Montpellier, France
| | - Pascale Varlet
- Department of Neuropathology, Centre Hospitalier Saint-Anne, Paris, France
| | - Hugues Loiseau
- Department of Neurosurgery, CEREPEG, Hôpital Pellegrin Tripode, Bordeaux, France.,EA 7435 - IMOTION University of Bordeaux (HL), Bordeaux
| | - Stéphanie Lacomme
- Centre de Ressources Biologiques, BB-0033-00035 (GG, SL), CHRU, Nancy, France
| | - Karima Mokhtari
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,AP-HP, Department of Neuropathology, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Michel Kalamarides
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,Department of Neurosurgery, Groupe Hospitalier Pitié Salpêtrière, AP-HP (MP, MK), Paris, France
| | - Franck Bielle
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,AP-HP, Department of Neuropathology, Hôpital de la Pitié Salpêtrière, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society), Site de Recherche Intégrée sur le Cancer IUC, APHP.6, Sorbonne Université (FB), Paris, France
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Meningioma is a common intracranial neoplasm currently classified in 15 histologic subtypes across 3 grades of malignancy. First-choice therapy for meningioma is maximum safe resection for grade I tumors, and surgery plus optional and mandatory adjuvant radiotherapy for grade II and III, respectively, given the increased rate of recurrence even in the event of complete resection. The WHO 2016 histopathologic grading of meningioma has been questioned due to subjectivity and its controversial predictive power for recurrence. RECENT FINDINGS Novel DNA methylation profiling has simplified classification into six classes that seem to improve prognostic accuracy. We review five main topics of molecular biology research regarding tumorigenesis and natural history of meningioma from the clinician's perspective: the histopathologic diagnostic features and pitfalls of the current tumor classification; the molecular integrated diagnosis supported by identification of genetic alterations and DNA methylation profiling; the general landscape of the various signaling pathways involved in meningioma formation; the pathogenic theories of the peri-tumoral edema present in meningioma and its therapy implications; and a summarized review on the current treatments and plausible targeted therapies directed to meningioma. It seems likely that molecular assessment will be introduced within the next update of the WHO classification of meningiomas, acknowledging the promising value of DNA methylation profiling. This integrated diagnostic protocol will simplify tumor subtype categorization and provide improved accuracy in predicting recurrence and outcome. Although much effort is being done in identifying key gene mutations, and elucidating specific intracellular signaling pathways involved in meningioma tumorigenesis, effective targeted therapies for recurrent meningiomas are still lacking.
Collapse
|
40
|
Zhang YY, Zhang L, Liu YZ, Zhang R, Zhang GH. Prognostic factors and long-term outcomes of primary intracranial rhabdoid meningioma: A systematic review. Clin Neurol Neurosurg 2020; 196:105971. [DOI: 10.1016/j.clineuro.2020.105971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
|
41
|
Negroni C, Hilton DA, Ercolano E, Adams CL, Kurian KM, Baiz D, Hanemann CO. GATA-4, a potential novel therapeutic target for high-grade meningioma, regulates miR-497, a potential novel circulating biomarker for high-grade meningioma. EBioMedicine 2020; 59:102941. [PMID: 32810829 PMCID: PMC7452696 DOI: 10.1016/j.ebiom.2020.102941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Meningiomas are the most common primary intracranial tumours. They are classified as grade I, II, and III based on their histopathological features. While most meningiomas can be managed by surgery alone, adjuvant treatment may be required in case of recurrent, or high-grade tumours. To date, chemotherapy has proven ineffective in meningioma patients, reinforcing the need for novel therapeutic targets and molecular biomarkers. METHODS Using meningioma tissues and in vitro models, we investigated microRNA levels in meningioma samples of different grades, as well as their regulation. Based on this, we also investigated candidate miRNAs expression in serum, and their potential as biomarkers. FINDINGS We found that miR-497~195 cluster expression in meningioma decreases with increasing malignancy grade, and that Cyclin D1 overexpression correlated with downregulation of the miR-497~195 cluster. GATA binding protein 4, a transcription factor upregulated in malignant meningioma, caused increased cell viability by controlling the expression of the miR-497~195 cluster, resulting in increased Cyclin D1 expression. Accordingly, GATA-4 inhibition via the small-molecule inhibitor NSC140905 restored miR-497~195 cluster expression, resulting in decreased viability, and Cyclin D1 downregulation. Analysis of the miR-497~195 cluster expression in serum exosomes derived from high-grade meningioma patients, revealed lower levels of miR-497 compared to those of benign origin. INTERPRETATION Our data suggest that GATA-4 could be a novel potential therapeutic target, and miR-497 could serve as a potential non-invasive biomarker for high-grade meningioma.
Collapse
Affiliation(s)
- Caterina Negroni
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Emanuela Ercolano
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Claire L Adams
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Kathreena M Kurian
- Institute of Clinical Neuroscience, University of Bristol and Southmead Hospital - North Bristol Trust, Bristol BS8 1QU, UK
| | - Daniele Baiz
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - C Oliver Hanemann
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
42
|
Suppiah S, Nassiri F, Bi WL, Dunn IF, Hanemann CO, Horbinski CM, Hashizume R, James CD, Mawrin C, Noushmehr H, Perry A, Sahm F, Sloan A, Von Deimling A, Wen PY, Aldape K, Zadeh G. Molecular and translational advances in meningiomas. Neuro Oncol 2020; 21:i4-i17. [PMID: 30649490 DOI: 10.1093/neuonc/noy178] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are the most common primary intracranial neoplasm. The current World Health Organization (WHO) classification categorizes meningiomas based on histopathological features, but emerging molecular data demonstrate the importance of genomic and epigenomic factors in the clinical behavior of these tumors. Treatment options for symptomatic meningiomas are limited to surgical resection where possible and adjuvant radiation therapy for tumors with concerning histopathological features or recurrent disease. At present, alternative adjuvant treatment options are not available in part due to limited historical biological analysis and clinical trial investigation on meningiomas. With advances in molecular and genomic techniques in the last decade, we have witnessed a surge of interest in understanding the genomic and epigenomic landscape of meningiomas. The field is now at the stage to adopt this molecular knowledge to refine meningioma classification and introduce molecular algorithms that can guide prediction and therapeutics for this tumor type. Animal models that recapitulate meningiomas faithfully are in critical need to test new therapeutics to facilitate rapid-cycle translation to clinical trials. Here we review the most up-to-date knowledge of molecular alterations that provide insight into meningioma behavior and are ready for application to clinical trial investigation, and highlight the landscape of available preclinical models in meningiomas.
Collapse
Affiliation(s)
- Suganth Suppiah
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Wenya Linda Bi
- Centre for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ian F Dunn
- Centre for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clemens Oliver Hanemann
- Institute of Translational and Stratified Medicine, Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Craig M Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrew Sloan
- Department of Neurological Surgery, University Hospital-Case Medical Center, Cleveland, Ohio, USA
| | - Andreas Von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth Aldape
- Department of Laboratory Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Helgager J, Driver J, Hoffman S, Bi WL. Molecular Advances in Central Nervous System Mesenchymal Tumors. Surg Pathol Clin 2020; 13:291-303. [PMID: 32389268 DOI: 10.1016/j.path.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesenchymal tumors of the central nervous system (CNS) comprise an array of neoplasms that may arise from or secondarily affect the CNS and its immediate surroundings. This review focuses on meningiomas and solitary fibrous tumors, the most common primary CNS mesenchymal tumors, and discusses recent advances in unveiling the molecular landscapes of these neoplasms. An effort is made to underscore those molecular findings most relevant to tumor diagnostics and prognostication from a practical perspective. As molecular techniques become more readily used at the clinical level, such alterations may strengthen formal grading schemes and lend themselves to treatment with targeted therapies.
Collapse
Affiliation(s)
- Jeffrey Helgager
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Driver
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha Hoffman
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Abstract
Meningiomas are a diverse group of neoplasms that exhibit a wide range of morphologies and clinical behavior. They are generally accepted to originate from arachnoid cap cells within the leptomeninges. Classic histologic features include whorl formations, psammoma bodies, nuclear holes, and nuclear pseudoinclusions. Meningiomas are classified as benign, atypical, or anaplastic (grades I, II, or III) based on histologic features including mitotic activity, brain invasion, and presence of other minor criteria. There are numerous histologic variants of meningiomas, and some are associated with worse clinical outcomes and therefore are assigned a higher grade. The majority of meningiomas show diffuse positivity for vimentin and epithelial membrane antigen, supporting the dual mesenchymal and epithelial nature of meningothelial cells. The presence of an elevated proliferation index (as measured by Ki-67 immunohistochemical stain) and loss of progesterone receptor expression are associated with the higher grade. Pathologic features including histologic variants, grading criteria, and ancillary tests such as special and immunohistochemical stains are discussed.
Collapse
Affiliation(s)
- David A Solomon
- Division of Neuropathology, Department of Pathology, University of California San Francisco, San Francisco, CA, United States.
| | - Melike Pekmezci
- Division of Neuropathology, Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
Peyre M, Gauchotte G, Giry M, Froehlich S, Pallud J, Graillon T, Bielle F, Cazals-Hatem D, Varlet P, Figarella-Branger D, Loiseau H, Kalamarides M. De novo and secondary anaplastic meningiomas: a study of clinical and histomolecular prognostic factors. Neuro Oncol 2019; 20:1113-1121. [PMID: 29216385 DOI: 10.1093/neuonc/nox231] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Following recent studies underlining the differences between de novo and secondary anaplastic meningiomas and the prognostic value of telomerase reverse transcriptase (TERT) promoter mutation, we decided to conduct a multicenter retrospective study to address these questions and determine specific prognostic factors in each of these 2 anaplastic meningioma subgroups. Methods Among the 68 meningioma cases initially selected, only 57 were confirmed as anaplastic meningiomas after centralized pathological review. TERT promoter mutation analysis was performed in all cases. Results Median overall survival was 2.6 years and 5-year survival rate was 10%. This study confirmed the better prognosis of de novo anaplastic meningiomas (28 tumors) compared with secondary anaplastic meningiomas (29 tumors) (P = 0.02). In the "de novo" group, meningiomas diagnosed on histological anaplasia alone had a better prognosis than those in patients with a high number of mitoses with or without anaplasia (P = 0.01). In the "secondary" group, tumors demonstrate very heterogeneous clinical courses leading to malignant transformation, and time to first relapse as a low-grade tumor was a strong predictor of overall survival (P = 0.0007). TERT promoter mutation in anaplastic meningiomas was rare (14%) and did not influence overall survival but was associated with a shorter recurrence-free survival in the secondary anaplastic meningioma subgroup (P = 0.02). The absence of TERT promoter methylation, although rare (3/33 cases), may be associated with prolonged overall survival (P = 0.02). Conclusion This study highlights the different prognoses of de novo and secondary anaplastic meningiomas with specific prognostic factors in each subgroup. The analysis of TERT mutation and methylation could provide additional prognostic insights.
Collapse
Affiliation(s)
- Matthieu Peyre
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France.,Université Paris VI-Pierre et Marie Curie, Paris, France.,Inserm 1127 Unit-Institut du Cerveau et de la Moelle Epinière, Paris, France
| | | | - Marine Giry
- Inserm 1127 Unit-Institut du Cerveau et de la Moelle Epinière, Paris, France
| | | | - Johan Pallud
- Department of Neurosurgery, Hôpital Sainte-Anne, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMA-BRAIN, Inserm, U894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Thomas Graillon
- Department of Neurosurgery, Hôpital la Timone, Marseille, France
| | - Franck Bielle
- Department of Neuropathology, Hopital Pitié-Salpêtrière, APHP, Paris, France
| | | | - Pascale Varlet
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMA-BRAIN, Inserm, U894, Centre de Psychiatrie et Neurosciences, Paris, France.,Department of Neuropathology, Hopital Sainte-Anne, Paris, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, INSERM, CRO2, La Timone Hospital, Department of Pathology and Neuropathology, Marseille, France
| | - Hugues Loiseau
- Department of Neurosurgery, Hopital Pellegrin, Bordeaux, France
| | - Michel Kalamarides
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France.,Université Paris VI-Pierre et Marie Curie, Paris, France.,Inserm 1127 Unit-Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
46
|
Žulpaitė R, Jagelavičius Ž, Mickys U, Janilionis R. Primary Pulmonary Meningioma With Rhabdoid Features. Int J Surg Pathol 2018; 27:457-463. [DOI: 10.1177/1066896918819257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Only 1% to 2% of meningiomas have primary extrameningeal location, which is mostly head and neck region. Primary pulmonary meningiomas (PPMs) are even more uncommon with up to 50 cases reported in the literature. Only 5 cases of PPM with confirmed or possible malignancy have been previously described. Three-grade classification of meningiomas with the accordingly growing risk of aggressive behavior of the tumor has been proposed by the World Health Organization. As it is based on correlations between morphological and clinical features of intracranial meningiomas, the analogous prediction of ectopic tumors prognosis remains questionable due to scarce number of cases. In this article, we present a rare case of PPM with rhabdoid features (World Health Organization grade III), which lacked other signs of malignancy. The patient is doing well for 2 years after the thoracoscopic wedge resection without evidence of the disease recurrence.
Collapse
|
47
|
Ravanpay AC, Barkley A, White-Dzuro GA, Cimino PJ, Gonzalez-Cuyar LF, Lockwood C, Halasz LM, Hisama FM, Ferreira M. Giant Pediatric Rhabdoid Meningioma Associated with a Germline BAP1 Pathogenic Variation: A Rare Clinical Case. World Neurosurg 2018; 119:402-415. [DOI: 10.1016/j.wneu.2018.06.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022]
|
48
|
Nowosielski M, Galldiks N, Iglseder S, Kickingereder P, von Deimling A, Bendszus M, Wick W, Sahm F. Diagnostic challenges in meningioma. Neuro Oncol 2018; 19:1588-1598. [PMID: 28531331 DOI: 10.1093/neuonc/nox101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in molecular profiling and the application of advanced imaging techniques are currently refreshing diagnostic considerations in meningioma patients. Not only technical refinements but also sophisticated histopathological and molecular studies have the potential to overcome some of the challenges during meningioma management. Exact tumor delineation, assessment of tumor growth, and pathophysiological parameters were recently addressed by "advanced" MRI and PET. In the field of neuropathology, high-throughput sequencing and DNA methylation analysis of meningioma tissue has greatly advanced the knowledge of molecular aberrations in meningioma patients. These techniques allow for more reliable prediction of the biological behavior and clinical course of meningiomas and subsequently have the potential to guide individualized meningioma therapy. However, higher costs and longer duration of full molecular work-up compared with histological assessment may delay the implementation into clinical routine.This review highlights the diagnostic challenges of meningiomas from both the neuroimaging as well as the neuropathological side and presents the latest scientific achievements and studies potentially helping in overcoming these challenges. It complements the recently proposed European Association of Neuro-Oncology guidelines on treatment and diagnosis of meningiomas by integrating data on nonstandard imaging and molecular assessments most likely impacting the future.
Collapse
Affiliation(s)
- Martha Nowosielski
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Iglseder
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Kickingereder
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Andreas von Deimling
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Wolfgang Wick
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Felix Sahm
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany; University Medical Center, Neuroradiology, Heidelberg, Germany; University Medical Center, Neuropathology, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
49
|
Yeşiltaş YS, Gündüz K, Okçu Heper A, Erden E. Ectopic rhabdoid meningioma of the orbit in a child: case report and review of the literature. J Neurosurg Pediatr 2018; 22:151-157. [PMID: 29726794 DOI: 10.3171/2018.1.peds17557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In August 2016, an 11-year-old boy presented to the authors' institution with a right orbital tumor that was located superotemporally (superolaterally) and adherent to the sclera. The patient's past medical history revealed that he had undergone 2 previous craniotomies elsewhere in June 2008 and July 2010 for a superomedially located orbital lesion that had been histopathologically diagnosed as a neurothekeoma. After the second craniotomy, the patient underwent adjuvant intensity modulated radiotherapy (IMRT) to the right medial orbit. At the authors' institution, total excision of the orbital tumor was performed via an anterior conjunctival orbitotomy. Histopathological examination revealed a rhabdoid meningioma. Review of the histopathology obtained at the time of previous tumor excisions showed that the lesion was misdiagnosed as neurothekeoma and instead represented a meningioma from the beginning. The patient was started on a regimen of oral sunitinib and remained free of recurrence at 1.5 years of follow-up. Ectopic meningioma of the orbit is a rare entity. Rhabdoid meningioma is a rarely seen subtype of meningioma, accounting for 1%-3% of all intracranial meningiomas. To the best of the authors' knowledge, this is the first case of an ectopic orbital rhabdoid meningioma reported in the literature. They suspect that tumor seeding during the previous surgeries might have played a role in the occurrence of the tumor in an orbital location not targeted by IMRT.
Collapse
Affiliation(s)
| | | | - Aylin Okçu Heper
- 2Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Esra Erden
- 2Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
50
|
Theeler BJ. De novo and secondary anaplastic meningiomas: natural history, prognosis, and the TERT promoter. Neuro Oncol 2018; 20:1009-1010. [PMID: 29982653 PMCID: PMC6280145 DOI: 10.1093/neuonc/noy101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Brett J Theeler
- Walter Reed National Military Medical Center, Department of Neurology and John P. Murtha Cancer Center, Bethesda, Maryland
| |
Collapse
|