1
|
Tóth L, Szöllősi D, Kis-Petik K, Adorján I, Erdélyi F, Kálmán M. The First Postlesion Minutes: An In Vivo Study of Extravasation and Perivascular Astrocytes Following Cerebral Lesions in Various Experimental Mouse Models. J Histochem Cytochem 2018; 67:29-39. [PMID: 30047826 DOI: 10.1369/0022155418788390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immediate alterations following lesions cannot be investigated by using fixed tissues. Here, we employed two-photon microscopy to study the alterations to the permeability of blood-brain barrier and to glio-vascular connections in vivo during the first minutes following cortical lesions in mice. Four models were used: (1) cryogenic lesion, (2) photodisruption using laser pulses, (3) photothrombosis, and (4) bilateral carotid ligation. Sulforhodamine101 was used for supravital labeling of astrocytes and dextran-bound fluorescein isothiocyanate for the assessment of extravasation. Transgenic mice, in which the endothelium and astrocytes expressed a yellow fluorescent protein, were also used. Astrocytic labeling in vivo was verified with postmortem immunostaining against glial fibrillary acidic protein (GFAP). Summary of results: (1) the glio-vascular connections were stable in the intact brain with no sign of spontaneous dynamic attachment/detachment of glial end-feet; (2) only direct vascular damage (photodisruption or cryogenic) resulted in prompt extravasation; (3) even direct damage failed to provoke a prompt astroglial response. In conclusion, the results indicate that a detachment of the astrocytic end-feet does not precede the breakdown of blood-brain barrier following lesions. Whereas vasogenic edema develops immediately after the lesions, this is not the case with cytotoxic edemas. Time-lapse recordings and three-dimensional reconstructions are presented as supplemental materials.
Collapse
Affiliation(s)
- László Tóth
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Dávid Szöllősi
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Katalin Kis-Petik
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - István Adorján
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Ferenc Erdélyi
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Mihály Kálmán
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| |
Collapse
|