1
|
Papapetropoulos S, Gelfand JM, Konno T, Ikeuchi T, Pontius A, Meier A, Foroutan F, Wszolek ZK. Clinical presentation and diagnosis of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: a literature analysis of case studies. Front Neurol 2024; 15:1320663. [PMID: 38529036 PMCID: PMC10962389 DOI: 10.3389/fneur.2024.1320663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Because adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is critical. This analysis examined the frequency of initial misdiagnosis of ALSP via comprehensive review of peer-reviewed published cases. Methods Data were extracted from a MEDLINE search via PubMed (January 1, 1980, through March 22, 2022) from eligible published case reports/series for patients with an ALSP diagnosis that had been confirmed by testing for the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient demographics, clinical symptoms, brain imaging, and initial diagnosis data were summarized descriptively. Categorical data for patient demographics, symptoms, and brain imaging were stratified by initial diagnosis category to test for differences in initial diagnosis based on each variable. Results Data were extracted from a cohort of 291 patients with ALSP from 93 published case reports and case series. Mean (standard deviation) age of symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric abnormalities (26.8%) were the most frequently reported initial symptoms. Of 291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) and the most frequent initial misdiagnosis categories were frontotemporal dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 13 cases, no final diagnosis was reported. Initial diagnosis category varied based on age, family history, geographic region, mode of inheritance, and presenting symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral and psychiatric abnormalities, cognitive impairment, and speech difficulty. Brain imaging abnormalities were common, and initial diagnosis category was significantly associated with white matter hyperintensities, white matter calcifications, and ventricular enlargement. Discussion In this literature analysis, ALSP was frequently misdiagnosed. Improving awareness of this condition and distinguishing it from other conditions with overlapping presenting symptoms is important for timely management of a rapidly progressive disease such as ALSP.
Collapse
Affiliation(s)
| | | | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Andreas Meier
- Vigil Neuroscience, Inc., Watertown, MA, United States
| | - Farid Foroutan
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
2
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
3
|
Mickeviciute GC, Valiuskyte M, Plattén M, Wszolek ZK, Andersen O, Danylaité Karrenbauer V, Ineichen BV, Granberg T. Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations. J Intern Med 2022; 291:269-282. [PMID: 34875121 DOI: 10.1111/joim.13420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.
Collapse
Affiliation(s)
- Goda-Camille Mickeviciute
- Department of Physical Medicine and Rehabilitation, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Monika Valiuskyte
- Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of Chemistry, Biotechnology, and Health, Royal Institute of Technology, Stockholm, Sweden
| | | | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
MRI T 2 and T 2* relaxometry to visualize neuromelanin in the dorsal substantia nigra pars compacta. Neuroimage 2020; 211:116625. [PMID: 32058001 DOI: 10.1016/j.neuroimage.2020.116625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Visualizing gradual changes in neuromelanin distribution within the substantia nigra is an important metric used to monitor the progression of Parkinsonism. This study aimed to identify the origin of the mismatch region between magnetic resonance transverse relaxation times (T2 and T2*) in the substantia nigra and investigate its feasibility and implications for in vivo detection of neuromelanin as a clinical biomarker. The relationships between neuromelanin distribution assessed by histological staining and the area of T2 and T2* mismatch determined by high- and low-resolution magnetic resonance relaxometry at 7T were directly compared in two normal and one depigmented substantia nigra collected at postmortem. In vivo feasibility of assessing T2 and T2* mismatch, clinically, was investigated using 3T magnetic resonance imaging. In the normal postmortem substantia nigra tissue, the T2 and T2* mismatch region exhibiting a linear pattern was strongly colocalized with neuromelanin distribution along the dorsal substantia nigra pars compacta, but a negligible amount of dorsal mismatch was observed in the depigmented brain. The regions of T2 and T2* mismatch from MRI, neuromelanin pigments from histology, and elevated iron signals from mass spectrometry were spatially overlapped for a normal postmortem brain. In preliminary in vivo studies, a similar, linear T2 and T2* mismatch region was observed in the dorsal area of the substantia nigra in eight normal subjects; this mismatch was significantly obscured in eight Parkinson's disease patients. The length of the dorsal linear mismatch line based on the T2*-T2 mask was significantly shorter in the Parkinson's disease patients compared to normal controls; this result was corroborated by reduced striatal uptake of [18F] FP-CIT dopamine transporters assessed by positron emission tomography scans. In conclusion, the measurement of T2 and T2* mismatch could serve as a complementary imaging biomarker to visualize the dorsal region of the substantia nigra pars compacta, which contains large amounts of neuromelanin.
Collapse
|
5
|
Thurnher MM, Boban J, Rieger A, Gelpi E. Susceptibility-Weighted MR Imaging Hypointense Rim in Progressive Multifocal Leukoencephalopathy: The End Point of Neuroinflammation and a Potential Outcome Predictor. AJNR Am J Neuroradiol 2019; 40:994-1000. [PMID: 31122919 DOI: 10.3174/ajnr.a6072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Progressive multifocal leukoencephalopathy (PML) represents a life-threatening demyelinating disorder of the brain caused by reactivation of a rare opportunistic infection with JC Polyomavirus. The aims of this study were to describe the incidence of a susceptibility-weighted imaging hypointense rim in patients with multifocal leukoencephalopathy and to explore the histologic correlates and prognostic value of the rim with regard to the clinical outcome. MATERIALS AND METHODS This retrospective study included 18 patients with a definite diagnosis of progressive multifocal leukoencephalopathy. Ten patients were HIV-positive, 3 patients had natalizumab-associated progressive multifocal leukoencephalopathy, 1 patient had multiple myeloma, 3 patients had a history of lymphoma, and 1 was diagnosed with acute myeloid leukemia. Patients were divided into short- (up to 12 months) and long-term (>12 months) survivors. A total of 93 initial and follow-up MR imaging examinations were reviewed. On SWI, the presence and development of a hypointense rim at the periphery of the progressive multifocal leukoencephalopathy lesions were noted. A postmortem histologic examination was performed in 2 patients: A rim formed in one, and in one, there was no rim. RESULTS A total of 73 progressive multifocal leukoencephalopathy lesions were observed. In 13 (72.2%) patients, a well-defined thin, linear, hypointense rim at the periphery of the lesion toward the cortical side was present, while in 5 (27.8%) patients, it was completely absent. All 11 long-term survivors and 2 short-term survivors presented with a prominent SWI-hypointense rim, while 5/7 short-term survivors did not have this rim. CONCLUSIONS The thin, uniformly linear, gyriform SWI-hypointense rim in the paralesional U-fibers in patients with definite progressive multifocal leukoencephalopathy might represent an end-point stage of the neuroinflammatory process in long-term survivors.
Collapse
Affiliation(s)
- M M Thurnher
- From the Departments of Biomedical Imaging and Image-Guided Therapy (M.M.T., J.B.)
| | - J Boban
- From the Departments of Biomedical Imaging and Image-Guided Therapy (M.M.T., J.B.)
| | | | - E Gelpi
- Institute of Neurology (E.G.), University Hospital Vienna, Medical University of Vienna, Vienna, Austria
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut dÌnvestigacions Biomediques August Pi i Sunyer (E.G.), Barcelona, Spain
| |
Collapse
|
6
|
Kim EJ, Kim YE, Jang JH, Cho EH, Na DL, Seo SW, Jung NY, Jeong JH, Kwon JC, Park KH, Park KW, Lee JH, Roh JH, Kim HJ, Yoon SJ, Choi SH, Jang JW, Ki CS, Kim SH. Analysis of frontotemporal dementia, amyotrophic lateral sclerosis, and other dementia-related genes in 107 Korean patients with frontotemporal dementia. Neurobiol Aging 2018; 72:186.e1-186.e7. [PMID: 30054184 DOI: 10.1016/j.neurobiolaging.2018.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 11/15/2022]
Abstract
To identify pathogenic variants in 107 Korean patients with sporadic frontotemporal dementia (FTD), 46 genes related to FTD, amyotrophic lateral sclerosis, and other dementias were screened by next-generation sequencing. Hexanucleotide repeats in C9orf72 gene were also tested by repeat-primed polymerase chain reaction. Next-generation sequencing revealed one known pathogenic variant (c.708+1G>A) in the GRN gene in a patient with behavioral variant FTD (bvFTD). In addition, a novel in-frame deletion (c.2675_2683del) in the CSF1R gene was identified in a patient with bvFTD who had severe bifrontal atrophy with frontal subcortical white matter changes. Novel compound heterozygous variants in the AARS2 gene, c.1040+1G>A and c.636G>A (p.Met212Ile), were found in a patient with bvFTD. Forty-six variants of uncertain significance were detected in other patients. None of the patients had expanded hexanucleotide repeats in C9orf72. These results show that pathogenic variants of known FTD genes are rare in Korean FTD patients but the CSF1R and AARS2 genes should be screened for a genetic diagnosis of FTD or other dementias.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Green Cross Genome, Yongin, Gyeonggi-do, Republic of Korea
| | - Eun-Hae Cho
- Green Cross Genome, Yongin, Gyeonggi-do, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea
| | - Jee H Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul, Republic of Korea
| | - Jay C Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulgi University Hospital, Daejeon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Chang-Seok Ki
- Green Cross Genome, Yongin, Gyeonggi-do, Republic of Korea.
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|