1
|
Celorrio M, Shumilov K, Friess SH. Gut microbial regulation of innate and adaptive immunity after traumatic brain injury. Neural Regen Res 2024; 19:272-276. [PMID: 37488877 PMCID: PMC10503601 DOI: 10.4103/1673-5374.379014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension, hypoxia, intracranial hypertension, and detrimental inflammation. However, the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems. Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease. A critical component of this axis is the microorganisms of the gut known as the gut microbiome. Changes in gut microbial populations in the setting of central nervous system disease, including traumatic brain injury, have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care. In this review article, we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury. We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury.
Collapse
Affiliation(s)
- Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kirill Shumilov
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Rogers MB, Simon D, Firek B, Silfies L, Fabio A, Bell MJ, Yeh A, Azar J, Cheek R, Kochanek PM, Peddada SD, Morowitz MJ. Temporal and Spatial Changes in the Microbiome Following Pediatric Severe Traumatic Brain Injury. Pediatr Crit Care Med 2022; 23:425-434. [PMID: 35283451 PMCID: PMC9203870 DOI: 10.1097/pcc.0000000000002929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The microbiome may be affected by trauma and critical illness. Many studies of the microbiome in critical illness are restricted to a single body site or time point and confounded by preexisting conditions. We report temporal and spatial alterations in the microbiome of previously healthy children with severe traumatic brain injury (TBI). DESIGN We collected oral, rectal, and skin swabs within 72 hours of admission and then twice weekly until ICU discharge. Samples were analyzed by 16S rRNA gene amplicon sequencing. Children undergoing elective outpatient surgery served as controls. Alpha and beta diversity comparisons were performed with Phyloseq, and differentially abundant taxa were predicted using Analysis of Composition of Microbiomes. SETTING Five quaternary-care PICUs. PATIENTS Patients less than 18 years with severe TBI requiring placement of an intracranial pressure monitor. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Three hundred twenty-seven samples were analyzed from 23 children with severe TBI and 35 controls. The community composition of initial oral (F = 3.2756, R2 = 0.0535, p = 0.012) and rectal (F = 3.0702, R2 = 0.0649, p = 0.007) samples differed between TBI and control patients. Rectal samples were depleted of commensal bacteria from Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae families and enriched in Staphylococcaceae after TBI (p < 0.05). In exploratory analyses, antibiotic exposure, presence of an endotracheal tube, and occurrence of an infection were associated with greater differences of the rectal and oral microbiomes between TBI patients and healthy controls, whereas enteral nutrition was associated with smaller differences (p < 0.05). CONCLUSIONS The microbiome of children with severe TBI is characterized by early depletion of commensal bacteria, loss of site specificity, and an enrichment of potential pathogens. Additional studies are needed to determine the impact of these changes on clinical outcomes.
Collapse
Affiliation(s)
- Matthew B. Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurie Silfies
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Anthony Fabio
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michael J. Bell
- Division of Critical Care Medicine, Children’s National Medical Center, Washington, DC, USA
| | - Andrew Yeh
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justin Azar
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard Cheek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shyamal D. Peddada
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Microbiome and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Sharma R, Casillas-Espinosa PM, Dill LK, Rewell SSJ, Hudson MR, O'Brien TJ, Shultz SR, Semple BD. Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain Behav Immun 2022; 100:29-47. [PMID: 34808288 DOI: 10.1016/j.bbi.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.
Collapse
Affiliation(s)
- Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|