1
|
Mo D, Tang X, Ma Y, Chen D, Xu W, Jiang N, Zheng J, Yan F. tRNA-derived fragment 3'tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer. J Transl Med 2024; 22:706. [PMID: 39080676 PMCID: PMC11290069 DOI: 10.1186/s12967-024-05513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Drug resistance, including Adriamycin-based therapeutic resistance, remains a challenge in breast cancer (BC) treatment. Studies have revealed that macrophages could play a pivotal role in mediating the chemoresistance of cancer cells. Accumulating evidence suggests that tRNA-Derived small RNAs (tDRs) are associated the physiological and pathological processes in multiple cancers. However, the underlying mechanisms of tDRs on chemoresistance of BC in tumor-associated macrophages remain largely unknown. METHODS The high-throughput sequencing technique was used to screen tDRs expression profile in BC cells. Gain- and loss-of-function experiments and xenograft models were performed to verify the biological function of 3'tRF-Ala-AGC in BC cells. The CIBERSORT algorithm was used to investigate immune cell infiltration in BC tissues. To explore the role of 3'tRF-Ala-AGC in macrophages, M2 macrophages transfected with 3'tRF-Ala-AGC mimic or inhibitor were co-cultured with BC cells. Effects on Nuclear factor-κb (NF-κb) pathway were investigated by NF-κb nuclear translocation assay and western blot analysis. RNA pull-down assay was performed to identify 3'tRF-Ala-AGC interacting proteins. RESULTS A 3'tRF fragment of 3'tRF-AlaAGC was screened, which is significantly overexpressed in BC specimens and Adriamycin-resistant cells. 3'tRF-AlaAGC could promote cell malignant activity and facilitate M2 polarization of macrophages in vitro and in vivo. Higher expression of M2 macrophages were more likely to have lymph node metastasis and deeper invasion in BC patients. Mechanistically, 3'tRF-AlaAGC binds Type 1-associated death domain protein (TRADD) in BC cells, and suppression of TRADD partially abolished the enhanced effect of 3'tRF-AlaAGC mimic on phenotype of M2. The NF-κb signaling pathway was activated in BC cells co-cultured with M2 macrophages transfected with 3'tRF-AlaAGC mimic. CONCLUSIONS 3'tRF-AlaAGC might modulate macrophage polarization via binding to TRADD and increase the effect of M2 on promoting the chemoresistance in BC cells through NF-κb signaling pathway.
Collapse
Affiliation(s)
- Dongping Mo
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Xun Tang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Yuyan Ma
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Dayu Chen
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Weiguo Xu
- Department of General Surgery, Naning Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Ning Jiang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Feng Yan
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
| |
Collapse
|
2
|
Mariana Kustiawan P, Siregar KAAK, Syaifie PH, Zein Muttaqin F, Ibadillah D, Miftah Jauhar M, Djamas N, Mardliyati E, Taufiqu Rochman N. Uncovering the anti-breast cancer activity potential of east Kalimantan propolis by In vitro and bioinformatics analysis. Heliyon 2024; 10:e33636. [PMID: 39071605 PMCID: PMC11283153 DOI: 10.1016/j.heliyon.2024.e33636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Numerous side effects of breast cancer drugs have prompted researchers to explore more into new therapeutic approaches derived from natural substances. In this context, our study focused on uncovering the potential of East Kalimantan propolis from Trigona apicalis for breast cancer treatment including the underlying mechanisms through bioinformatics approached. We conducted integrated in vitro and bioinformatics analysis of network pharmacology, molecular docking, molecular dynamics and MM-GBSA analysis. Initially, in vitro cytotoxic assay demonstrated the anti-breast cancer activity potential of ethanol extract of East Kalimantan propolis, particularly its ethyl acetate fraction, which exhibited similar activity to doxorubicin, as indicated by their IC50 value. This study revealed eight propolis compounds, consisting of flavonoids and phenolic acids, in East Kalimantan propolis. By integrating microarray datasets (GSE29431, GSE36295, and GSE42568) analysis with potential targets derived from propolis compounds, 39 shared target genes were identified. Subsequently, GO and KEGG pathway, protein-protein interaction (PPI) network, core hub genes and gene expression analysis revealed three major targets, namely, PTGS2, CXCL2, and MMP9. Among them, only MMP9 was highly expressed in breast cancer than normal. Moreover, molecular docking revealed the six of propolis compounds which exhibited pronounced binding affinity towards MMP-9, better than marimastat as control drug. Dynamic simulation confirmed the stability of chrysin and quercetin as best compounds. Additionally, MM-GBSA analysis revealed a relative binding energy for chrysin (-25.6403 kcal/mol) that was comparable to marimastat (-27.3827 kcal/mol). In conclusion, this study reveals how East Kalimantan Propolis affect breast cancer and emphasizes MMP9 as a key target for future therapeutics.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Fauzan Zein Muttaqin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Nailulkamal Djamas
- Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
3
|
Yadav M, Vaishkiar I, Sharma A, Shukla A, Mohan A, Girdhar M, Kumar A, Malik T, Mohan A. Oestrogen receptor positive breast cancer and its embedded mechanism: breast cancer resistance to conventional drugs and related therapies, a review. Open Biol 2024; 14:230272. [PMID: 38889771 DOI: 10.1098/rsob.230272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/14/2024] [Indexed: 06/20/2024] Open
Abstract
Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.
Collapse
Affiliation(s)
- Manu Yadav
- Division of Genetics, ICAR- Indian Agricultural Research Institute , Pusa, New Delhi, India
| | - Ishita Vaishkiar
- Amity Institute of Biotechnology (AIB) University, Amity University Noida , Noida, India
| | - Ananya Sharma
- Department: Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University , Srinagar, India
| | - Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| | - Aradhana Mohan
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University , Phagwara, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology , New Delhi, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University , Jimma, Oromia 378, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| |
Collapse
|
4
|
Shi G, Li X, Wang W, Hou L, Yin L, Wang L. Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway. Cell Biochem Biophys 2024; 82:659-667. [PMID: 38411783 DOI: 10.1007/s12013-024-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Breast cancer (BC) is a lethal disorder that threatens the life safety of the majority of females globally, with rising morbidity and mortality year by year. Doxorubicin is a cytotoxic anthracycline antibiotic that is widely used as one of the first-line chemotherapy agents for patients with BC. However, the efficacy of doxorubicin in the clinic is largely limited by its serious side effects and acquired drug resistance. Allicin (diallyl thiosulfinate), as the major component and key active compound present in freshly crushed garlic, has shown potential effects in suppressing chemotherapy resistance in various cancers. Our research aimed to explore the relationship between allicin and doxorubicin resistance in BC. To generate doxorubicin-resistant BC cell lines (MCF-7/DOX and MDA-MB-231/DOX), doxorubicin-sensitive parental cell lines MCF-7 and MDA-MB-231 were continuously exposed to stepwise increased concentrations of doxorubicin over a period of 6 months. CCK-8, colony formation, flow cytometry, RT-qPCR, and western blotting assays were performed to investigate the effects of allicin and/or doxorubicin treatment on the viability, proliferation and apoptosis and the expression of Nrf2, HO-1, phosphate AKT and AKT in doxorubicin-resistant BC cells. Our results showed that combined treatment of allicin with doxorubicin exhibited better effects on inhibiting the proliferation and enhancing the apoptosis of doxorubicin-resistant BC cells than treatment with allicin or doxorubicin alone. Mechanistically, allicin suppressed the levels of Nrf2, HO-1, and phosphate AKT in doxorubicin-resistant BC cells. Collectively, allicin improves the doxorubicin sensitivity of BC cells by inactivating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Guojian Shi
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Weiping Wang
- Department of General Surgery, Kunshan Second People's Hospital, Suzhou, 215300, China
| | - Lili Hou
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Lei Yin
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Li Wang
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215300, China.
| |
Collapse
|
5
|
Liao YN, Huang PQ, Pan H, Gai YZ, Zhan YF, Li SX, Nie HZ. Prolactin receptor potentiates chemotherapy through miRNAs-induced G6PD/TKT inhibition in pancreatic cancer. FASEB J 2024; 38:e23705. [PMID: 38805171 DOI: 10.1096/fj.202302287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a notoriously dismal prognosis. As a competitive inhibitor of DNA synthesis, gemcitabine is the cornerstone drug for treating PDAC at all stages. The therapeutic effect of gemcitabine, however, is often hindered by drug resistance, and the underlying mechanisms remain largely unknown. It is unclear whether their response to chemotherapeutics is regulated by endocrine regulators, despite the association between PDAC risk and endocrine deregulation. Here, we show that prolactin receptor (PRLR) synergizes with gemcitabine in both in vitro and in vivo treatment of PDAC. Interestingly, PRLR promotes the expression of miR-4763-3p and miR-3663-5p, two novel miRNAs whose functions are unknown. Furthermore, the analysis of transcriptome sequencing data of tumors from lactating mouse models enriches the PPP pathway, a multifunctional metabolic pathway. In addition to providing energy, the PPP pathway mainly provides a variety of raw materials for anabolism. We demonstrate that two key enzymes of the pentose phosphate pathway (PPP), G6PD and TKT, are directly targeted by miR-4763-3p and miR-3663-5p. Notably, miR-4763-3p and miR-3663-5p diminish the nucleotide synthesis of the PPP pathway, thereby increasing gemcitabine sensitivity. As a result, PRLR harnesses these two miRNAs to suppress PPP and nucleotide synthesis, subsequently elevating the gemcitabine sensitivity of PDAC cells. Also, PDAC tissues and tumors from LSL-KrasG12D/+, LSL-Trp53R172H/+, and PDX1-cre (KPC) mice exhibit downregulation of PRLR. Bisulfite sequencing of PDAC tissues revealed that PRLR downregulation is due to epigenetic methylation. In this study, we show for the first time that the endocrine receptor PRLR improves the effects of gemcitabine by boosting two new miRNAs that block the PPP pathway and nucleotide synthesis by inhibiting two essential enzymes concurrently. The PRLR-miRNAs-PPP axis may serve as a possible therapeutic target to supplement chemotherapy advantages in PDAC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Gemcitabine
- Gene Expression Regulation, Neoplastic/drug effects
- Glucosephosphate Dehydrogenase/metabolism
- Glucosephosphate Dehydrogenase/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Receptors, Prolactin/metabolism
- Receptors, Prolactin/genetics
- Mice, Nude
Collapse
Affiliation(s)
- Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yun-Fei Zhan
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Central Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, P.R. China
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
6
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
7
|
Karampuri A, Kundur S, Perugu S. Exploratory drug discovery in breast cancer patients: A multimodal deep learning approach to identify novel drug candidates targeting RTK signaling. Comput Biol Med 2024; 174:108433. [PMID: 38642491 DOI: 10.1016/j.compbiomed.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Breast cancer, a highly formidable and diverse malignancy predominantly affecting women globally, poses a significant threat due to its intricate genetic variability, rendering it challenging to diagnose accurately. Various therapies such as immunotherapy, radiotherapy, and diverse chemotherapy approaches like drug repurposing and combination therapy are widely used depending on cancer subtype and metastasis severity. Our study revolves around an innovative drug discovery strategy targeting potential drug candidates specific to RTK signalling, a prominently targeted receptor class in cancer. To accomplish this, we have developed a multimodal deep neural network (MM-DNN) based QSAR model integrating omics datasets to elucidate genomic, proteomic expression data, and drug responses, validated rigorously. The results showcase an R2 value of 0.917 and an RMSE value of 0.312, affirming the model's commendable predictive capabilities. Structural analogs of drug molecules specific to RTK signalling were sourced from the PubChem database, followed by meticulous screening to eliminate dissimilar compounds. Leveraging the MM-DNN-based QSAR model, we predicted the biological activity of these molecules, subsequently clustering them into three distinct groups. Feature importance analysis was performed. Consequently, we successfully identified prime drug candidates tailored for each potential downstream regulatory protein within the RTK signalling pathway. This method makes the early stages of drug development faster by removing inactive compounds, providing a hopeful path in combating breast cancer.
Collapse
Affiliation(s)
- Anush Karampuri
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India
| | - Sunitha Kundur
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India
| | - Shyam Perugu
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India.
| |
Collapse
|
8
|
Demos-Davies K, Lawrence J, Ferreira C, Seelig D. The Distant Molecular Effects on the Brain by Cancer Treatment. Brain Sci 2023; 14:22. [PMID: 38248237 PMCID: PMC10813787 DOI: 10.3390/brainsci14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer survivors experience cancer-related cognitive impairment (CRCI) secondary to treatment. Chemotherapy and radiation therapy independently contribute to cognitive dysfunction; however, the underlying mechanisms leading to dysfunction remain unclear. We characterized brain gene expression changes in a mouse model of CRCI to identify the mechanistic underpinnings. Eleven-to-twelve-week-old SKH1 mice were treated with doxorubicin (DOX), hindlimb radiation (RT), concurrent hindlimb radiation and doxorubicin (DOX-RT), or no treatment (control). Sixteen days following treatment, gene expression was measured from murine brains using the NanoString nCounter® glial profiling panel. Gene expression was normalized and compared between groups. No two groups shared the same expression pattern, and only Gnb1 and Srpr were upregulated in multiple treatment groups. Brains from DOX-treated mice had upregulated Atf2, Atp5b, Gnb1, Rad23b, and Srpr and downregulated Sirt5 expression compared to control brains. Brains from RT-treated mice demonstrated increased Abcg2 and Fgf2 and decreased C1qa and C1qb expression compared to control brains. Brains from DOX-RT-treated mice had upregulated Adar, E2f3, Erlec1, Gnb1, Srpr, Vim, and Pdgfra expression and downregulated Rock2 and Inpp5f expression compared to control brains. The gene expression changes demonstrated here highlight roles for neuronal transmission and oxidative stress in the pathogenesis of doxorubicin-related CRCI and inflammation in RT-related CRCI.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455,USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455,USA
| |
Collapse
|
9
|
Ma Y, Li L, Mo L, Wang X, Liu C, Wu Y, Liu C. Preparation and anti-tumor effects of mesoporous silica nanoparticles loaded with trifluoperazine. J Mater Chem B 2023; 11:10395-10403. [PMID: 37876312 DOI: 10.1039/d3tb01472j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We have developed a targeted nano-drug delivery system that effectively harnesses the anti-tumor properties of trifluoperazine (TFP), while concurrently mitigating its side effects on the central nervous system. The manufacturing process entailed the preparation of mesoporous silica nanoparticles (MSN-NH2), followed by the loading of trifluoperazine into the pores of MSN-NH2 and then surface modification with polyethylene glycol (PEG) and anisamide (AA), resulting in the formation of TFP@MSN@PEG-AA (abbreviated as TMPA) nanoparticles. In vitro and in vivo anti-tumor activity and hemolysis experiments showed that TMPA had an excellent safety profile and a good anti-tumor effect. Importantly, the drug content of the TMPA nanoparticle group was found to be significantly lower than that of the TFP group in the mouse brain tissue as determined by High Performance Liquid Chromatography (HPLC) detection. Therefore, the developed drug delivery system achieved the goal of maintaining TFP's anti-tumor action while avoiding its negative effects on the central nervous system.
Collapse
Affiliation(s)
- Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| | - Longxia Li
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Liufang Mo
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Xiaochen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Chenyue Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yijun Wu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
10
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Muckiene G, Vaitiekus D, Zaliaduonyte D, Bartnykaite A, Plisiene J, Zabiela V, Juozaityte E, Jurkevicius R. The Impact of Polymorphisms in ATP-Binding Cassette Transporter Genes on Anthracycline-Induced Early Cardiotoxicity in Patients with Breast Cancer. J Cardiovasc Dev Dis 2023; 10:232. [PMID: 37367397 DOI: 10.3390/jcdd10060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cardiac side effects associated with anthracycline-based treatment may seriously compromise the prognosis of patients with breast cancer (BC). Evidence shows that genes that operate in drug metabolism can influence the risk of anthracycline-induced cardiotoxicity (AIC). ATP-binding cassette (ABC) transporters could serve as one of the potential biomarkers for AIC risk stratification. We aimed to determine the link between single-nucleotide polymorphisms (SNPs) in several ABC genes (ABCB1 rs1045642, ABCC1 rs4148350, ABCC1 rs3743527) and cardiotoxicity. METHODS The study included 71 patients with BC, who were treated with doxorubicin-based chemotherapy. Two-dimensional echocardiography and speckle-tracking echocardiography were performed. AIC was defined as a new decrease of 10 percentage points in the left ventricular ejection fraction (LVEF). SNPs in ABCB1 and ABCC1 genes were evaluated using real-time PCR. RESULTS After a cumulative dose of 236.70 mg/m2 of doxorubicin, 28.2% patients met the criteria of AIC. Patients who developed AIC had a larger impairment in left ventricular systolic function compared to those who did not develop AIC (LVEF: 50.20 ± 2.38% vs. 55.41 ± 1.13%, p < 0.001; global longitudinal strain: -17.03 ± 0.52% vs. -18.40 ± 0.88%, p < 0.001). The ABCC1 rs4148350 TG genotype was associated with higher rates of cardiotoxicity (TG vs. GG OR = 8.000, 95% CI = 1.405-45.547, p = 0.019). CONCLUSIONS The study showed that ABCC1 rs4148350 is associated with AIC and could be a potential biomarker to assess the risk of treatment side effects in patients with BC.
Collapse
Affiliation(s)
- Gintare Muckiene
- Cardiology Clinic, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Cardiology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Diana Zaliaduonyte
- Cardiology Clinic, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Cardiology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307 Kaunas, Lithuania
- Cardiology Department, Kaunas Hospital of Lithuanian University of Health Sciences, LT-47144 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurgita Plisiene
- Cardiology Clinic, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Cardiology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307 Kaunas, Lithuania
| | - Vytautas Zabiela
- Cardiology Clinic, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Cardiology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaityte
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Renaldas Jurkevicius
- Cardiology Clinic, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Cardiology, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307 Kaunas, Lithuania
| |
Collapse
|
12
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
13
|
Gomes ER, Souza FR, Cassali GD, Sabino ADP, de Barros ALB, Oliveira MC. Investigation of the Antitumor Activity and Toxicity of Tumor-Derived Exosomes Fused with Long-Circulating and pH-Sensitive Liposomes Containing Doxorubicin. Pharmaceutics 2022; 14:2256. [PMID: 36365075 PMCID: PMC9696811 DOI: 10.3390/pharmaceutics14112256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/29/2023] Open
Abstract
Exosome-liposome hybrid nanocarriers containing chemotherapeutic agents have been developed to enhance drug delivery, improve the efficacy of the treatment of metastatic cancer, and overcome chemoresistance in cancer therapy. Thus, the objectives of this study were to investigate the toxicological profiles of exosomes fused with long-circulating and pH-sensitive liposomes containing doxorubicin (ExoSpHL-DOX) in healthy mice and the antitumor activity of ExoSpHL-DOX in Balb/c female mice bearing 4T1 breast tumors. The acute toxicity was determined by evaluating the mortality and morbidity of the animals and conducting hematological, biochemical, and histopathological analyses after a single intravenous administration of ExoSpHL-DOX. The results of the study indicated that the ExoSpHL-DOX treatment is less toxic than the free doxorubicin (DOX) treatment. ExoSpHL-DOX showed no signs of nephrotoxicity, even at the highest dose of DOX, indicating that the hybrid nanosystem may alter the distribution of DOX and reduce the kidney damage. Regarding the antitumor activity, ExoSpHL-DOX showed an antitumor effect compared to the control group. Furthermore, the hybrid nanocarrier of tumor-derived exosomes fused with long-circulating and pH-sensitive liposomes reduced the number of metastatic foci in the lungs. These results indicate that ExoSpHL-DOX may be a promising nanocarrier for the treatment of breast cancer, reducing toxicity and inhibiting metastasis, mainly in the lungs.
Collapse
Affiliation(s)
- Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fernanda Rezende Souza
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - André Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
14
|
Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2022; 51:D1263-D1275. [PMID: 36243960 PMCID: PMC9825618 DOI: 10.1093/nar/gkac812] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.
Collapse
Affiliation(s)
| | | | | | | | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute, Zhejiang University, Haining 314499, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunzhu Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
15
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
16
|
Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Curr Issues Mol Biol 2022; 44:3552-3572. [PMID: 36005140 PMCID: PMC9406749 DOI: 10.3390/cimb44080244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC) is a serious health concern that has a high fatality rate. The oral cavity has seven kinds of OC, including the lip, tongue, and floor of the mouth, as well as the buccal, hard palate, alveolar, retromolar trigone, and soft palate. The goal of this study is to look into new biomarkers and important pathways that might be used as diagnostic biomarkers and therapeutic candidates in OC. The publicly available repository the Gene Expression Omnibus (GEO) was to the source for the collection of OC-related datasets. GSE74530, GSE23558, and GSE3524 microarray datasets were collected for analysis. Minimum cut-off criteria of |log fold-change (FC)| > 1 and adjusted p < 0.05 were applied to calculate the upregulated and downregulated differential expression genes (DEGs) from the three datasets. After that only common DEGs in all three datasets were collected to apply further analysis. Gene ontology (GO) and pathway analysis were implemented to explore the functional behaviors of DEGs. Then protein−protein interaction (PPI) networks were built to identify the most active genes, and a clustering algorithm was also implemented to identify complex parts of PPI. TF-miRNA networks were also constructed to study OC-associated DEGs in-depth. Finally, top gene performers from PPI networks were used to apply drug signature analysis. After applying filtration and cut-off criteria, 2508, 3377, and 670 DEGs were found for GSE74530, GSE23558, and GSE3524 respectively, and 166 common DEGs were found in every dataset. The GO annotation remarks that most of the DEGs were associated with the terms of type I interferon signaling pathway. The pathways of KEGG reported that the common DEGs are related to the cell cycle and influenza A. The PPI network holds 88 nodes and 492 edges, and CDC6 had the highest number of connections. Four clusters were identified from the PPI. Drug signatures doxorubicin and resveratrol showed high significance according to the hub genes. We anticipate that our bioinformatics research will aid in the definition of OC pathophysiology and the development of new therapies for OC.
Collapse
|
17
|
Yang Z, Xiao T, Li Z, Zhang J, Chen S. Novel Chemicals Derived from Tadalafil Exhibit PRMT5 Inhibition and Promising Activities against Breast Cancer. Int J Mol Sci 2022; 23:ijms23094806. [PMID: 35563196 PMCID: PMC9103191 DOI: 10.3390/ijms23094806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer seriously endangers women’s health worldwide. Protein arginine methyltransferase 5 (PRMT5) is highly expressed in breast cancer and represents a potential druggable target for breast cancer treatment. However, because the currently available clinical PRMT5 inhibitors are relatively limited, there is an urgent need to develop new PRMT5 inhibitors. Our team previously found that the FDA-approved drug tadalafil can act as a PRMT5 inhibitor and enhance the sensitivity of breast cancer patients to doxorubicin treatment. To further improve the binding specificity of tadalafil to PRMT5, we chemically modified tadalafil, and designed three compounds, A, B, and C, based on the PRMT5 protein structure. These three compounds could bind to PRMT5 through different binding modes and inhibit histone arginine methylation. They arrested the proliferation and triggered the apoptosis of breast cancer cells in vitro and also promoted the antitumor effects of the chemotherapy drugs cisplatin, doxorubicin, and olaparib in combination regimens. Among them, compound A possessed the highest potency. Finally, the anti-breast cancer effects of PRMT5 inhibitor A and its ability to enhance chemosensitivity were further verified in a xenograft mouse model. These results indicate that the new PRMT5 inhibitors A, B, and C may be potential candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Tian Xiao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Zezhi Li
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
- Correspondence: (J.Z.); (S.C.)
| | - Suning Chen
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (J.Z.); (S.C.)
| |
Collapse
|