1
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
2
|
Lu Y, Yin L, Yang W, Wu Z, Niu J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed Pharmacother 2024; 176:116772. [PMID: 38810407 DOI: 10.1016/j.biopha.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Paeoniflorin (PF), which is the main component of the Paeonia lactiflora Pall extract, is one of the traditional Chinese medicines. The pharmacological effects associated with PF include antioxidant, immunomodulatory, anti-inflammatory, anticancer, antidepressant-like and neuroprotective effects. Our previous studies had revealed that PF protected melanocytes and inhibited photodamage through the suppression of oxidative stress (OS). As OS plays a vital role in the progression of a variety of diseases, the capacity for PF to suppress OS may exert important effects upon them. However, no review exists on these antioxidant effects of PF as related to various diseases. Therefore, in this review we summarized studies involved with examining the antioxidant effects and molecular mechanisms of PF. Through its capacity to inhibit OS, PF has been shown to exert beneficial effects upon several systems including nervous, cardiac/vascular, digestive, and respiratory as well as specific diseases such as diabetes, autoimmune, pregnancy related, ocular, kidney, dermatology, along with suppression of distal flap necrosis, postoperative adhesions, and hearing loss. Such findings provide new insights and directions for future research directed at the development of PF as a natural antioxidant for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lu Yin
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
3
|
Lan T, Li P, Zhang SJ, Liu SY, Zeng XX, Chai F, Tong YH, Mao ZJ, Wang SW. Paeoniflorin promotes PPARγ expression to suppress HSCs activation by inhibiting EZH2-mediated histone H3K27 trimethylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155477. [PMID: 38489890 DOI: 10.1016/j.phymed.2024.155477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor β1 (TGF-β1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Si-Jia Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shi-Yu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Hua Tong
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Si-Wei Wang
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
4
|
Hu Y, Ge K, Du Y. Paeoniflorin alleviates TGF-β2-mediated extracellular matrix remodeling and oxidative stress in human trabecular meshwork cells. Int Ophthalmol 2024; 44:229. [PMID: 38795168 DOI: 10.1007/s10792-024-02917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/24/2023] [Indexed: 05/27/2024]
Abstract
BACKGROUND The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-β2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-β2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-β2 (5 ng/mL). PAE (300 μM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-β2 for 22 h. SB-431542, a TGF-β receptor inhibitor (10 μM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-β2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS PAE attenuated TGF-β2-induced oxidative stress and suppressed TGF-β2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-β2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-β2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSION PAE alleviates TGF-β2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.
Collapse
Affiliation(s)
- Yongmei Hu
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China
| | - Kui Ge
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China
| | - Yan Du
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China.
| |
Collapse
|
5
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
6
|
Zhang J, Wang W, Cui X, Zhu P, Li S, Yuan S, Peng D, Peng C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117656. [PMID: 38154526 DOI: 10.1016/j.jep.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-β1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinge Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
7
|
Wu Q, Chen M, Li Y, Zhao X, Fan C, Dai Y. Paeoniflorin Alleviates Cisplatin-Induced Diminished Ovarian Reserve by Restoring the Function of Ovarian Granulosa Cells via Activating FSHR/cAMP/PKA/CREB Signaling Pathway. Molecules 2023; 28:8123. [PMID: 38138611 PMCID: PMC10745843 DOI: 10.3390/molecules28248123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.
Collapse
Affiliation(s)
- Qingchang Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Miao Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Yao Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Xiangyun Zhao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| |
Collapse
|
8
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
9
|
Amer J, Salhab A, Snobar H, Alhabil Y. The immune and metabolic treatment approach of using testosterone on mice models of liver injury. Front Pharmacol 2023; 14:1219709. [PMID: 37614321 PMCID: PMC10442657 DOI: 10.3389/fphar.2023.1219709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Natural killer (NK) cells showed an anti-fibrotic effect; however, their function is thought to be impaired in advanced liver injury. In the current study, we aimed to assess the immune and metabolic impact of testosterone on mice models of liver injury. Methods: Carbon-tetrachloride induced liver fibrosis male mice models was i.p injected for 2 weeks (acute) and 4 weeks (chronic) (n = 36). Testosterone (4 mg/kg mouse body weight) was injected i.p. following the first week of the acute model of CCl4 and following the second week of the chronic model of CCl4. At the end of the experiments, mice were sacrificed, and serum was collected for assessing liver enzymes of ALT and AST, as well as inflammatory markers of IL-6, metabolic makers of C-peptide levels, and lipid and glucose profiles. Livers were harvested and used for histological assessments for inflammation and fibrosis. Fibrosis profiles from liver extracts, αSMA and Collagen III, were assessed by RT-PCR. Moreover, liver tissue-resident NK cells were isolated and evaluated for their activity by assessing INF-γ and IL-6 receptors using ELISA and flow cytometry, respectively. Results: Serum ALT, AST, and IL-6, as well as metabolic assessments of cholesterol, triglyceride, C-peptide, fasting blood sugar, and fibrotic profiles, were linearly correlated with disease progressions. Histological characterization of the liver was worsened in the chronic model of liver injury. Testosterone-treated mice exhibit a significant reduction in collagen depositions with less dense fibrosis tissue associated with reduced liver injury enzymes and metabolic markers in both the acute and chronic CCl4 mice models in favor of the latter one (p < 0.05). Moreover, testosterone treatments displayed a significant decrease in serum IL-6 of 2.4-fold (p = 0.0001) and 2.3-fold (p = 0.0003) in the acute and chronic models, respectively (p = 0.002), and data showed an increase in INF-γ release from NK associated with a reduction in their IL-6 receptor expressions (p < 0.05). Conclusion: Our results indicated effects of testosterone on mediating a decreased expressions of NK IL-6 receptors and consequently inducing their activation; which in part, could explain the amelioration of liver injury. Our data suggest an anti-inflammatory and anti-fibrotic treatment approach of using testosterone for delaying disease progressions.
Collapse
Affiliation(s)
- Johnny Amer
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmad Salhab
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hadeel Snobar
- Department of Higher Education, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Yazan Alhabil
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
10
|
Guo Y, Tian G, Chen X, Hou Y, Zhang X, Xue X, Zhao L, Wu Y. GL-V9 ameliorates liver fibrosis by inhibiting TGF-β/smad pathway. Exp Cell Res 2023; 425:113521. [PMID: 36841325 DOI: 10.1016/j.yexcr.2023.113521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023]
Abstract
Liver fibrosis is a wound-healing response that arises from various aetiologies. Flavonoid compounds have been proved of their anti-liver fibrosis effects. This study aimed to elucidate the protective effect and mechanism of flavonoid compound GL-V9 on CCl4-induced and DDC-induced liver fibrosis. Treatment with GL-V9 alleviated hepatic injury and exhibited a dramatic protection effect of liver fibrosis. Further experiments found that GL-V9 treatment inhibited extracellular matrix (ECM) expression. Activation of hepatic stellate cells (HSCs) is a central driver of fibrosis. GL-V9 could inhibit the activation of HSCs through directly binding to TGFβRI, subsequently inhibit TGF-β/Smad pathway. In conclusion, this study proved that GL-V9 executed a protective effect on liver fibrosis by inhibiting TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yabing Guo
- Pharmaceutical Animal Experimental Center of China Pharmaceutical University, Nanjing, 211198, China
| | - Geng Tian
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Chen
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Center of Cellular and Molecular Biology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinyu Zhang
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Xue
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Zhao
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yun Wu
- Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, China.
| |
Collapse
|
11
|
Ma L, Liu X, Zhang M, Zhou L, Jiang L, Gao L, Wang X, Huang Y, Zeng H, Wu Y. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. Int Immunopharmacol 2023; 116:109754. [PMID: 36753983 DOI: 10.1016/j.intimp.2023.109754] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 02/08/2023]
Abstract
The pathophysiological mechanism of acute kidney injury (AKI) is complicated, and effective drugs are still lacking. Ferroptosis is a newly discovered regulatory cell death mode characterized by the lethal accumulation of iron and reactive oxygen species-(ROS-)-dependent lipid hydroperoxides. In recent years, ferroptosis has been confirmed to be involved in the progression of AKI. Paeoniflorin (PF) is a traditional Chinese medicine that has protective effects on a variety of kidney diseases including AKI. However, the mechanism by which PF attenuates AKI is unclear. We detected that PF attenuated serum biochemical markers, histological damage, ferroptosis and inflammation in a dose-dependent manner in a mouse AKI model with bilateral renal artery ischemia-reperfusion (IR). Hypoxia-reoxygenation (HR)-induced ferroptosis and inflammation was also inhibited by PF in human renal tubular epithelial cells (HK2). RNA sequence analysis revealed that PF inhibited ferroptosis in HK2 cells by upregulating Slc7a11 in the glutathione pathway after HR treatment. PF failed to further protect cells with specific knockdown of Slc7a11 from ferroptosis under HR conditions. Consequently, these data indicated that PF prevention of ferroptosis in AKI requires dependence on Slc7a11. This study provided a scientific basis for the clinical search for drugs to prevent IR induced AKI.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xian Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuebo Huang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Hanxu Zeng
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
12
|
Wang SJ, Ye W, Li WY, Tian W, Zhang M, Sun Y, Feng YD, Liu CX, Liu SY, Cao W, Meng JR, Li XQ. Effects and mechanisms of Xiaochaihu Tang against liver fibrosis: An integration of network pharmacology, molecular docking and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116053. [PMID: 36529247 DOI: 10.1016/j.jep.2022.116053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a potentially harmful chronic liver disease caused by various etiologies. There is currently no specific drug for liver fibrosis. Xiaochaihu Tang (XCHT) is a traditional formula combined of seven herbs, which was first recorded in the Treatise on Febrile Diseases in Han Dynasty of ancient China. It is widely used in clinic to hepatic protection, analgesic, antipyretic and anti-inflammatory treatment. And it has been recommended for treating chronic hepatitis and chronic cholecystitis in the latest guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional and western medicine. However, the underlying regulatory mechanisms remain elusive. AIM OF THE STUDY This study aims to explore the therapeutic effects of XCHT on liver fibrosis and its underlying molecular mechanisms from the perspective of network pharmacology and experimental research. MATERIALS AND METHODS Carbon tetrachloride (CCl4) induced and bile duct ligation (BDL) induced liver fibrosis models in mice were established to evaluate the anti-fibrosis effects of XCHT in vivo. Potential anti-fibrosis targets of XCHT were screened via network establishment. The underlying mechanisms were uncovered through GO and pathway enrichment analysis. Then, the core targets were identified from protein-protein interaction network by means of the Cytohubba plug-in of Cytoscape. Furthermore, two effective monomer components of XCHT were recognized by molecular docking. Moreover, the predicted components and pathways were verified by in vitro experiments. RESULTS When treated with XCHT, liver fibrosis was alleviated in both mice models, showing as the improvement of liver function, the protection of hepatocytes, the inhibition of HSC activation and the reduction of hepatic collagen accumulation. 540 monomer components, 300 therapeutic targets, 109 signaling pathways, 246 GO biological processes, 77 GO cellular components, 107 GO molecular functions items and core targets were identified by network analysis. Then, 6-gingerol and baicalein were identified as the core components of anti-fibrosis effects of XCHT via leptin or Nrf2 signaling pathway. Furthermore, the experiment in vitro also validated the results. CONCLUSIONS Our study suggests XCHT could alleviate liver fibrosis through multi-targets and multi-pathways; 6-gingerol and baicalein are its core components which may play an important role via leptin or Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shou-Jia Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wen Ye
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wan-Yi Li
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wen Tian
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Meng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Chen-Xu Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Shao-Yuan Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing-Ru Meng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
13
|
HBO1 as an Important Target for the Treatment of CCL4-Induced Liver Fibrosis and Aged-Related Liver Aging and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1881519. [PMID: 36524217 PMCID: PMC9747301 DOI: 10.1155/2022/1881519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
The liver is the largest digestive organ in the human body. The increasing incidence of chronic liver fibrosis is one of the major health challenges in the world. Liver fibrosis is a wound-healing response to acute or chronic cellular damage of liver tissue. At present, despite a series of research progress on the pathophysiological mechanism of fibrosis that has been made, there is still a gap in identifying antifibrotic targets and converting them into effective treatments. Therefore, it is extremely important to seek a molecular target that can alleviate or reverse liver fibrosis, which has important scientific and clinical significance. In the current study, to evaluate the therapeutic effect of HBO1 as a molecular target on liver aging and fibrosis, naturally-aged mice and CCL4-induced liver fibrosis mice were used as animal models, and multiple experiments were performed. Experimental results showed that HBO1 knockdown could strongly mitigate the accumulation of hepatic collagen by Masson and Sirius Red staining. Further study showed that HBO1 knockdown reduced the expression of fibrosis-related marker molecules (α-SMA, collagen type I (ColI), and fibronectin). Further work showed that HBO1 knockdown could significantly alleviate HSC activation. On this basis, we analyzed the underlying mechanism by which HBO1 alleviates liver fibrosis. It was found that HBO1 knockdown may modulate liver fibrosis by regulating the processes of EMT, inflammation, and oxidative stress. We further studied the effect of HBO1 knockdown on liver aging and aging-related liver fibrosis, and the results showed that HBO1 knockdown could significantly reduce the level of aging-related liver fibrosis and relieve liver aging. In conclusion, we systematically investigated the potential of HBO1 as a therapeutic target to attenuate liver fibrosis and liver aging. The current study found a crucial target for liver fibrosis and liver-aging therapy, which has laid a solid foundation for the liver fibrosis-related research.
Collapse
|
14
|
Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238534. [PMID: 36500627 PMCID: PMC9739375 DOI: 10.3390/molecules27238534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Drug-induced liver injury (DILI), represented by acetaminophen (APAP), is a common cause of acute liver failure in clinics. Paeoniflorin (PF) has been proven to demonstrate a significant hepatoprotective effect. However, it is still unclear whether it can be a potential agent against hepatotoxicity induced by APAP. This study aimed to explore the preventive and therapeutic effects and mechanisms of PF on APAP-induced liver injury. METHODS Different doses of PF (50, 100, and 200 mg/kg) were given to C57BL/6 male mice for five consecutive days. After 12 h of APAP (250 mg/kg i.p.) treatment, blood and liver tissues were collected and isolated for detection. RESULTS The results showed that the therapeutic effects of PF on APAP mice were presented in the downregulation of the content of serum indices and significantly improved hepatic tissue edema and inflammatory infiltration. Meanwhile, PF reduces the level of the mitochondrial metabolic enzyme. Ulteriorly, it was found that PF has a downregulating effect on the apoptotic reaction and could inhibit the protein expression of CYP2E1/JNK signaling, which in turn reduces the damage of APAP. CONCLUSION Our findings showed that PF acted as a protective agent against APAP-induced hepatotoxicity by inhibiting JNK-related signals, suggesting a novel insight into treating APAP-induced liver injury.
Collapse
|
15
|
Wang R, Yuan T, Sun J, Yang M, Chen Y, Wang L, Wang Y, Chen W, Peng D. Paeoniflorin alleviates 17α-ethinylestradiol-induced cholestasis via the farnesoid X receptor-mediated bile acid homeostasis signaling pathway in rats. Front Pharmacol 2022; 13:1064653. [PMID: 36479204 PMCID: PMC9719974 DOI: 10.3389/fphar.2022.1064653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 08/18/2024] Open
Abstract
Cholestasis, characterized by disturbance of bile formation, is a common pathological condition that can induce several serious liver diseases. As a kind of trigger, estrogen-induced cholestasis belongs to drug-induced cholestasis. Paeoniflorin is the most abundant bioactive constituent in Paeonia lactiflora Pall., Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, a widely used herbal medicine for treating hepatic disease over centuries in China. However, the pharmacologic effect and mechanism of paeoniflorin on estrogen-induced cholestasis remain unclear. In this experiment, the pharmacological effect of paeoniflorin on EE-induced cholestasis in rats was evaluated comprehensively for the first time. Ultra-high-performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometer was used to monitor the variation of bile acid levels and composition. It was demonstrated that paeoniflorin alleviated 17α-ethinylestradiol (EE)-induced cholestasis dose-dependently, characterized by a decrease of serum biochemical indexes, recovery of bile flow, amelioration of hepatic and ileal histopathology, and reduction of oxidative stress. In addition, paeoniflorin intervention restored EE-disrupted bile acid homeostasis in enterohepatic circulation. Further mechanism studies using western blot, quantitative Real-Time PCR, and immunohistochemical showed that paeoniflorin could upregulate hepatic efflux transporters expression but downregulate hepatic uptake transporter expression. Meanwhile, paeoniflorin reduced bile acids synthesis by repressing cholesterol 7α-hydroxylase in hepatocytes. Paeoniflorin affected the above transporters and enzyme via activation of a nuclear receptor, farnesoid X receptor (FXR), which was recognized as a vital regulator for maintaining bile acid homeostasis. In conclusion, paeoniflorin alleviated EE-induced cholestasis and maintained bile acid homeostasis via FXR-mediated regulation of bile acids transporters and synthesis enzyme. The findings indicated that paeoniflorin might exert a potential therapeutic medicine for estrogen-induced cholestasis.
Collapse
Affiliation(s)
- Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Tengteng Yuan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Jing Sun
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yunna Chen
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
- College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yanyan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| |
Collapse
|
16
|
Xu R, Qiu S, Zhang J, Liu X, Zhang L, Xing H, You M, Wang M, Lu Y, Zhang P, Zhu J. Silibinin Schiff Base Derivatives Counteract CCl4-Induced Acute Liver Injury by Enhancing Anti-Inflammatory and Antiapoptotic Bioactivities. Drug Des Devel Ther 2022; 16:1441-1456. [PMID: 35601675 PMCID: PMC9122151 DOI: 10.2147/dddt.s356847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Rong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Correspondence: Jing Zhu, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China, Tel +86-15895975410, Email
| |
Collapse
|
17
|
Yuan T, Lv S, Zhang W, Tang Y, Chang H, Hu Z, Fang L, Du J, Wu S, Yang X, Guo Y, Guo R, Ge Z, Wang L, Zhang C, Wang R, Cheng W. PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. Int J Pharm 2022; 615:121480. [PMID: 35041917 DOI: 10.1016/j.ijpharm.2022.121480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Paeoniflorin (PF) has a certain therapeutic effect on cholestasis liver injury. To further improve the bioavailability of PF and play its pharmacological role in liver protection, PF-phospholipid complex micelles (PF-PLC micelles) were prepared based on our previous research on PF-PLC. The protective effects of PF and PF-PLC micelles on cholestasis liver injury induced by 17α-ethynylestradiol (EE) were compared, and the possible mechanisms were further explored. Herein, we showed that PF-PLC micelles effectively improved liver function, alleviated liver pathological damage, and localized infiltration of inflammatory cells. Mechanism studies indicated that PF-PLC micelles treatment could suppress the TLR4/MyD88/NF-κB pathway, and further reduce the levels of pro-inflammatory factors. Meanwhile, our experimental results demonstrated that the beneficial effect of PF-PLC micelles on EE-induced cholestasis may be achieved by the upregulation of nuclear receptors and metabolic enzymes (PXR/CAR/UGT1A1). All these results indicate that PF-PLC micelles have great potential in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Tengteng Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Shujie Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yanan Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Hong Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zihan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Liang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Jiaojiao Du
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Sifan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Xinli Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yangfu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zongrui Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China.
| | - Rulin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| | - Weidong Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| |
Collapse
|