1
|
Yang J, Yuan Y, Wang L, Deng G, Huang J, Liu Y, Gu W. Suppression of long noncoding RNA SNHG6 alleviates cigarette smoke-induced lung inflammation by modulating NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:2634-2641. [PMID: 38205902 DOI: 10.1002/tox.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Junxia Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Guoping Deng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Jiaru Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
2
|
DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep 2024; 14:1. [PMID: 38167627 PMCID: PMC10762256 DOI: 10.1038/s41598-023-50600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.
Collapse
Affiliation(s)
- William DeGroat
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Kush Patel
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Dinesh Mendhe
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Wang Y, Luo J, Yang H, Liu Y. LncRNA Peg13 Alleviates Myocardial Infarction/Reperfusion Injury through Regulating MiR-34a/Sirt1-Mediated Endoplasmic Reticulum Stress. Int Heart J 2024; 65:517-527. [PMID: 38825496 DOI: 10.1536/ihj.23-453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Myocardial infarction/reperfusion (I/R) injury significantly impacts the health of older individuals. We confirmed that the level of lncRNA Peg13 was downregulated in I/R injury. However, the detailed function of Peg13 in myocardial I/R injury has not yet been explored.To detect the function of Peg13, in vivo model of I/R injury was constructed. RT-qPCR was employed to investigate RNA levels, and Western blotting was performed to assess levels of endoplasmic reticulum stress and apoptosis-associated proteins. EdU staining was confirmed to assess the cell proliferation.I/R therapy dramatically produced myocardial injury, increased the infarct area, and decreased the amount of Peg13 in myocardial tissues of mice. In addition, hypoxia/reoxygenation (H/R) notably induced the apoptosis and promoted the endoplasmic reticulum (ER) stress of HL-1 cells, while overexpression of Peg13 reversed these phenomena. Additionally, Peg13 may increase the level of Sirt1 through binding to miR-34a. Upregulation of Peg13 reversed H/R-induced ER stress via regulation of miR-34a/Sirt1 axis.LncRNA Peg13 reduces ER stress in myocardial infarction/reperfusion injury through mediation of miR-34a/Sirt1 axis. Hence, our research might shed new lights on developing new strategies for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yonghong Wang
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha
| | - Jian Luo
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha
| | - Huiqiong Yang
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha
| | - Yanfei Liu
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha
| |
Collapse
|
4
|
Ahmed Z, Degroat W, Abdelhalim H, Zeeshan S, Fine D. Deciphering genomic signatures associating human dental oral craniofacial diseases with cardiovascular diseases using machine learning approaches. Clin Oral Investig 2024; 28:52. [PMID: 38163819 DOI: 10.1007/s00784-023-05406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Periodontal diseases are chronic, inflammatory disorders that involve the destruction of supporting tissues surrounding the teeth which leads to permanent damage and substantially heightens systemic exposure. If left untreated, dental, oral, and craniofacial diseases (DOCs), especially periodontitis, can increase an individual's risk in developing complex traits including cardiovascular diseases (CVDs). In this study, we are focused on systematically investigating causality between periodontitis with CVDs with the application of artificial intelligence (AI), machine learning (ML) algorithms, and state-of-the-art bioinformatics approaches using RNA-seq-driven gene expression data of CVD patients. MATERIALS AND METHODS In this study, we built a cohort of CVD patients, collected their blood samples, and performed RNA-seq and gene expression analysis to generate transcriptomic profiles. We proposed a nexus of AI/ML approaches for the identification of significant biomarkers, and predictive analysis. We implemented recursive feature elimination, Pearson correlation, chi-square, and analysis of variance to detect significant biomarkers, and utilized random forest and support vector machines for predictive analysis. RESULTS Our AI/ML analyses have led us to the preliminary conclusion that GAS5, GPX1, HLA-B, and SNHG6 are the potential gene markers that can be used to explain the causal relationship between periodontitis and CVDs. CONCLUSIONS CVDs are relatively common in patients with periodontal disease, and an increased risk of CVD is associated with periodontal disease independent of gender. Genetic susceptibility contributing to periodontitis and CVDs have been suggested to some extent, based on the similar degree of heritability shared between both complex diseases.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA.
| | - William Degroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, USA
| | - Daniel Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| |
Collapse
|
5
|
Huang G, Qiu Y, Fan Y, Liu J. METTL3-deficiency Suppresses Neural Apoptosis to Induce Protective Effects in Cerebral I/R Injury via Inhibiting RNA m6A Modifications: A Pre-clinical and Pilot Study. Neurochem Res 2024; 49:85-98. [PMID: 37610605 DOI: 10.1007/s11064-023-04015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
N6-Methyladenosine (m6A) RNA methylation involves in regulating the initiation, progression and aggravation of cerebral ischemia-reperfusion (I/R) injury, however, the detailed functions and mechanisms by which m6A drives cerebral I/R injury are not fully understood. This study found that methyltransferase-like 3 (METTL3) m6A-dependently regulated cerebral I/R injury trough regulating a novel LncRNA ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α axis. Specifically, the middle cerebral artery occlusion (MCAO)/reperfusion mice models and glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell models were respectively established, and we verified that METTL3, ABHD11-AS1 and HIF1AN were upregulated, whereas miR-1301-3p and HIF-1α were downregulated in both MCAO/reperfusion mice tissues and OGD/RX astrocytes. Mechanical experiments confirmed that METTL3 m6A dependently increased stability and expression levels of ABHD11-AS1, and elevated ABHD11-AS1 sponged miR-1301-3p to upregulate HIF1AN, resulting in the downregulation of HIF-1α. Moreover, silencing of METTL3 rescued MCAO/reperfusion and OGD/RX-induced oxidative stress-associated cell apoptosis and cell cycle arrest in both mice brain tissues in vivo and the mouse primary astrocytes in vitro, which were abrogated by overexpressing ABHD11-AS1 and downregulating miR-1301-3p. Taken together, our study firstly reported a novel METTL3/m6A/ ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α signaling cascade in regulating the progression of cerebral I/R injury, and future work will focus on investigating whether the above genes can be used as biomarkers for the treatment of cerebral I/R injury by performing clinical studies.
Collapse
Affiliation(s)
- Gang Huang
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Yuda Qiu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Yafei Fan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Jianfeng Liu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
6
|
Zhang J, Fu L, Zhang J, Zhou B, Tang Y, Zhang Z, Gu T. Inhibition of MicroRNA-122-5p Relieves Myocardial Ischemia-Reperfusion Injury via SOCS1. Hamostaseologie 2023; 43:271-280. [PMID: 36882114 DOI: 10.1055/a-2013-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE Evidence has shown that microRNA (miR)-122-5p is a diagnostic biomarker of acute myocardial infarction. Here, we aimed to uncover the functions of miR-122-5p in the pathological process of myocardial ischemia-reperfusion injury (MI/RI). METHODS An MI/RI model was established by left anterior descending coronary artery ligation in mice. The levels of miR-122-5p, suppressor of cytokine signaling-1 (SOCS1), phosphorylation of Janus kinase 2 (p-JAK2), and signal transducers and activators of transcription (p-STAT3) in the myocardial tissues of mice were measured. Downregulated miR-122-5p or upregulated SOCS1 recombinant adenovirus vectors were injected into mice before MI/RI modeling. The cardiac function, inflammatory response, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in the myocardial tissues of mice were evaluated. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury and cardiomyocyte biological function was tested upon transfection of miR-122-5p inhibitor. The target relation between miR-122-5p and SOCS1 was evaluated. RESULTS miR-122-5p expression and p-JAK2 and p-STAT3 expression were high, and SOCS1 expression was low in the myocardial tissues of MI/RI mice. Decreasing miR-122-5p or increasing SOCS1 expression inactivated the JAK2/STAT3 pathway to alleviate MI/RI by improving cardiac function and reducing inflammatory reaction, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in mice. Silencing of SOCS1 reversed depleted miR-122-5p-induced cardioprotection for MI/RI mice. In vitro experiments revealed that the downregulation of miR-122-5p induced proliferative, migratory, and invasive capabilities of H/R cardiomyocytes while inhibiting apoptosis. Mechanically, SOCS1 was a target gene of miR-122-5p. CONCLUSION Our study summarizes that inhibition of miR-122-5p induces SOCS1 expression, thereby relieving MI/RI in mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Li Fu
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Bo Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yanrong Tang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Zhenzhen Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Tongqing Gu
- School of Foreign Languages, Chengdu University of Information Technology, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun 2023; 647:1-8. [PMID: 36706596 DOI: 10.1016/j.bbrc.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.
Collapse
Affiliation(s)
- Qiuxia Zhu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Yong Luo
- Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Ding Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Jing Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway. Cancer Cell Int 2022; 22:282. [PMID: 36100906 PMCID: PMC9469619 DOI: 10.1186/s12935-022-02702-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling cascade is one of the complex signaling pathways that control the accurately organized developmental processes in multicellular organisms. This pathway has fundamental roles in the tumor formation and induction of resistance to conventional therapies. Numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. Many of the Shh-interacting ncRNAs are oncogenes whose expressions have been increased in diverse malignancies. A number of Shh-targeting miRNAs such as miR-26a, miR-1471, miR-129-5p, miR-361-3p, miR-26b-5p and miR-361-3p have been found to be down-regulated in tumor tissues. In addition to malignant conditions, Shh-interacting ncRNAs can affect tissue regeneration and development of neurodegenerative disorders. XIST, LOC101930370, lncRNA-Hh, circBCBM1, SNHG6, LINC‐PINT, TUG1 and LINC01426 are among long non-coding RNAs/circular RNAs that interact with Shh pathway. Moreover, miR-424, miR-26a, miR-1471, miR-125a, miR-210, miR-130a-5p, miR-199b, miR-155, let-7, miR-30c, miR-326, miR-26b-5p, miR-9, miR-132, miR-146a and miR-425-5p are among Shh-interacting miRNAs. The current review summarizes the interactions between ncRNAs and Shh in these contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region,, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wei Y, Xiao L, Yingying L, Haichen W. Pinoresinol diglucoside ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN. J Biochem Mol Toxicol 2022; 36:e23175. [PMID: 35962614 DOI: 10.1002/jbt.23175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
This study is aimed to investigate the effect of pinoresinol diglucoside (PDG) in ameliorating myocardial ischemia-reperfusion injury (MIRI). Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes were used to establish an in-vitro ischemia-reperfusion injury model of cardiomyocytes. Cells were treated with 1 μmol/L of PDG. Reactive oxygen species (ROS) level was detected by a 2',7'-dichlorofluorescein-diacetate assay. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was examined by enzyme-linked immunosorbent assay. The viability and apoptosis of H9c2 cells were probed by MTT assay and flow cytometry. Besides this, Western blot and quantitative real-time PCR were used to detect microRNA-142-3p (miR-142-3p) and hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) expression levels. The binding sequence between miR-142-3p and HIF1AN 3'-untranslated region was validated by a dual-luciferase reporter gene assay. PDG treatment significantly reduced the level of ROS, LDH, and CK-MB, promoted viability, and inhibited the apoptosis of H9c2 cells. PDG treatment promoted miR-142-3p expression and inhibited HIF1AN expression in H9c2 cells. MiR-142-3p overexpression enhanced the effects of PDG on ROS, LDH, CK-MB levels, cell viability, and apoptosis in H9c2 cardiomyocytes, while overexpression of HIF1AN reversed the above effects. PDG ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Xiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liu Yingying
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Haichen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|