1
|
Gill A, Hirst AL, Rowshanfarzad P, Gill S, Bucknell N, Dass J, Sabet M. Stereotactic body radiotherapy for early-stage lung cancer: a systematic review on the choice of photon energy and linac flattened/unflattened beams. Radiat Oncol 2024; 19:1. [PMID: 38167095 PMCID: PMC10762943 DOI: 10.1186/s13014-023-02392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
SBRT is an effective local treatment for patients with early-stage non-small cell lung cancer (NSCLC). This treatment is currently used in patients who have poor lung function or who decline surgery. As SBRT usually has small PTV margins, reducing the beam-on-time (BOT) is beneficial for accurate dose delivery by minimising intrafraction motion as well as improved patient comfort. Removal of the linear accelerator flattening filter can provide a higher dose rate which results in a faster treatment. In addition, the choice of photon energy can also affect the dose distribution to the target and the organs-at-risk (OAR). In this systematic review, studies analysing the choice of various photon beam energies, with a flattening filter or flattening filter free (FFF), were compared for their overall dosimetric benefit in the SBRT treatment for early-stage NSCLC. It was found that FFF treatment delivers a comparatively more conformal dose distribution, as well as a better homogeneity index and conformity index, and typically reduces BOT by between 30 and 50%. The trade-off may be a minor increase in monitor units for FFF treatment found in some studies but not others. Target conformity and OAR sparing, particularly lung doses appear better with 6MV FFF, but 10MV FFF was marginally more advantageous for skin sparing and BOT reduction. The favourable beam modality for clinical use would depend on the individual case, for which tumour size and depth, radiotherapy technique, as well as fractionation scheme need to be taken into account.
Collapse
Affiliation(s)
- Ashlesha Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Andrew L Hirst
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Nicholas Bucknell
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Joshua Dass
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Mahsheed Sabet
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| |
Collapse
|
3
|
Ghemiş DM, Marcu LG. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit Rev Oncol Hematol 2021; 163:103396. [PMID: 34146680 DOI: 10.1016/j.critrevonc.2021.103396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to summarize and evaluate the current status of knowledge on flattening filter free (FFF) beams and their applications in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). A PubMed search was undertaken in order to identify relevant publications using FFF and stereotactic radiotherapy as keywords. On a clinical aspect, lung tumors treated with FFF SBRT show promising results in terms of local control and overall survival with acute toxicities consistent with those that occur with standard radiotherapy. Beside lung, SBRT is suitable for different anatomical sites such as liver, prostate, cervix, etc. offering similar results: reduced treatment time, good tumor control and mild acute toxicities. Regarding brain tumors, the employment of SRS with FFF beams significantly reduces treatment time and provides notable normal tissue sparing due to the sharp dose fall-off outside the tumor.
Collapse
Affiliation(s)
- Diana M Ghemiş
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|