1
|
Thadeus MS, Susantiningsih T, Muktamiroh H, Fauziah C, Citrawati M, Irmarahayu A, Wahyuningsih S, Harjono Hadiwiardjo Y, Yusmaini H, Bahar M, Zulfa F, Agustini D, Chairani A. Moringa oleifera fruit extract as a potential antioxidant against liver injury by 2-Nitropropane induction in obese male mice model: pre-clinical study. F1000Res 2024; 12:300. [PMID: 39282511 PMCID: PMC11401981 DOI: 10.12688/f1000research.121695.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 09/19/2024] Open
Abstract
Background: Moringa oleifera fruit extract contains beneficial chemical compounds. This study was conducted to observed the power of antioxidant against liver injury by 2-Nitropropane induction in an obese male mice model. Methods: This research was in vivo laboratory experimental study with a post-test control design group only. The population was obese male mice models, Swiss strain, aged 6-8 weeks, weighing between 60-80 gr. The research sample was determined by Federer's formula for a complete randomized design experimental test, group N (control), O1 (induced by 2-Nitropropane intraperitoneal (i.p) once), O2 (induced by 2-Nitropropane i.p twice), P1 (induced by 2-Nitropropane i.p. once and gavage with M. oleifera fruit extract 500mg/kg bodyweight (BW) once a day), P2 (induced by 2-Nitropropane i.p. twice and gavage of M. oleifera fruit extract 500mg/kg BW once a day), and P3 (induced by 2-Nitropropane i.p. twice and gavage of vitamin C 500mg/kg BW once a day). Antioxidant potential parameters were measured by levels of malondialdehide (MDA), glutation (GSH), 8-hydroxy-2'-deoxyguanosine (8-OHdG), catalase activity, manganese superoxide dismutase (MnSOD), serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT). This research was held at the Biochemistry laboratory of Medicine Faculty, UPN Veteran Jakarta in May-September 2020. Analysis was carried out using SPSS version 20.0. The parameters were tested using ANOVA. Results: MDA levels decreased, GSH increased, 8-OHdG decreased, catalase activity increased, MnSOD activity increased and SGOT, SGPT levels decreased. M. oleifera fruit extract was statistically proven to be a candidate for potential antioxidant against liver injury of 2-Nitropropane induction in obese male mice model. Conclusions: M. oleifera fruit extract was statistically evident as an antioxidant substance that reduces oxidative stress in acute liver injury caused by 2-Nitropropane induction.
Collapse
Affiliation(s)
- Maria Selvester Thadeus
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
- Patologi Anatomi, UPN Veteran Jakarta, Jakarta, DKI Jakarta, 12450, Indonesia
| | | | - Hikmah Muktamiroh
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Cut Fauziah
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Mila Citrawati
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Agneta Irmarahayu
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Sri Wahyuningsih
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | | | - Hany Yusmaini
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Meiskha Bahar
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Fajriati Zulfa
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Diana Agustini
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| | - Aulia Chairani
- Medical Faculty, UPN Veteran Jakarta, Jakarta, Indonesia, 12450, Indonesia
| |
Collapse
|
2
|
Kataoka T, Ishida T, Naoe S, Kanzaki N, Sakoda A, Tanaka H, Mitsunobu F, Yamaoka K. Potential inhibitory effects of low-dose thoron inhalation and ascorbic acid administration on alcohol-induced hepatopathy in mice. JOURNAL OF RADIATION RESEARCH 2022; 63:719-729. [PMID: 35818298 PMCID: PMC9494542 DOI: 10.1093/jrr/rrac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Although thoron inhalation exerts antioxidative effects in several organs, there are no reports on whether it inhibits oxidative stress-induced damage. In this study, we examined the combined effects of thoron inhalation and ascorbic acid (AA) administration on alcohol-induced liver damage. Mice were subjected to thoron inhalation at 500 or 2000 Bq/m3 and were administered 50% ethanol (alcohol) and 300 mg/kg AA. Results showed that although alcohol administration increased the levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in the serum, the combination of thoron inhalation (500 Bq/m3) and AA administration 24 h after alcohol administration effectively inhibited alcohol-induced liver damage. The combination of thoron inhalation (500 Bq/m3) and AA administration 24 h after alcohol administration increased catalase (CAT) activity. Alcohol administration significantly decreased glutathione (GSH) levels in the liver. The GSH content in the liver after 2000 Bq/m3 thoron inhalation was lower than that after 500 Bq/m3 thoron inhalation. These findings suggest that the combination of thoron inhalation at 500 Bq/m3 and AA administration has positive effects on the recovery from alcohol-induced liver damage. The results also suggested that thoron inhalation at 500 Bq/m3 was more effective than that at 2000 Bq/m3, possibly because of the decrease in GSH content in the liver. In conclusion, the combination of thoron inhalation at 500 Bq/m3 and AA administration promoted an early recovery from alcohol-induced liver damage.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Tsuyoshi Ishida
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Naoe
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Hiroshi Tanaka
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Fumihiro Mitsunobu
- Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Corresponding author. Graduate School of Health Sciences, Okayama University, 51 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan. Phone: +81-86-235-6852; E-mail:
| |
Collapse
|
3
|
Kataoka T, Naoe S, Murakami K, Yukimine R, Fujimoto Y, Kanzaki N, Sakoda A, Mitsunobu F, Yamaoka K. Mechanisms of action of radon therapy on cytokine levels in normal mice and rheumatoid arthritis mouse model. J Clin Biochem Nutr 2022; 70:154-159. [PMID: 35400822 PMCID: PMC8921724 DOI: 10.3164/jcbn.21-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The typical indication of radon therapy is rheumatoid arthritis. Although there are several reports that radon therapy has regulation effects on Th17 cells, there has been no study reporting that radon inhalation affects the immune balance among Th1, Th2, and Th17. The purpose of this study is to examine the cytokine changes after radon inhalation. BALB/c mice inhaled radon at 2,000 Bq/m3 for 2 or 4 weeks. SKG/Jcl mice inhaled radon at 2,000 Bq/m3 for 4 weeks after zymosan administration. The results showed that radon inhalation for 4 weeks activated the immune response of Th1, Th2, and Th17. Moreover, the balance among them was not lost by radon inhalation. Radon inhalation for 4 weeks decreased superoxide dismutase activity and increased catalase activity in spleen. These findings suggest that an imbalance of oxidative stress may contribute to activate the immune response. Although zymosan administration activated Th17 immune response and decreased Th1 and Th2 immune response in SKG/Jcl mice, most cytokines related to Th1, Th2, and Th17 approached the normal level by radon inhalation. These findings suggested that radon inhalation has a different action between SKG/Jcl mice and normal BABL/c mice. This may indicate that radon inhalation has an immunomodulation function.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Naoe
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kaito Murakami
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ryohei Yukimine
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Yuki Fujimoto
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Fumihiro Mitsunobu
- Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Deloch L, Hehlgans S, Rückert M, Maier A, Hinrichs A, Flohr AS, Eckert D, Weissmann T, Seeling M, Nimmerjahn F, Fietkau R, Rödel F, Fournier C, Frey B, Gaipl US. Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells 2022; 11:689. [PMID: 35203348 PMCID: PMC8870723 DOI: 10.3390/cells11040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Annika Hinrichs
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
- Department of Physics, Goethe Universität Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Ann-Sophie Flohr
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Eckert
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Yamaoka K, Kataoka T. Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy. J Clin Biochem Nutr 2021; 70:87-92. [PMID: 35400814 PMCID: PMC8921726 DOI: 10.3164/jcbn.21-85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022] Open
Abstract
Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects.
Collapse
Affiliation(s)
- Kiyonori Yamaoka
- Health Sciences, Institute of Academic and Research, Okayama University
| | - Takahiro Kataoka
- Health Sciences, Institute of Academic and Research, Okayama University
| |
Collapse
|