1
|
Autsavapromporn N, Kobayashi A, Liu C, Duangya A, Oikawa M, Tengku Ahmad TA, Konishi T. Primary and Secondary Bystander Effects of Proton Microbeam Irradiation on Human Lung Cancer Cells under Hypoxic Conditions. BIOLOGY 2023; 12:1485. [PMID: 38132311 PMCID: PMC10741139 DOI: 10.3390/biology12121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Tumor hypoxia is the most common feature of radioresistance to the radiotherapy (RT) of lung cancer and results in poor clinical outcomes. High-linear energy transfer (LET) radiation is a novel RT technique to overcome this problem. However, a limited number of studies have been elucidated on the underlying mechanism(s) of RIBE and RISBE in cancer cells exposed to high-LET radiation under hypoxia. Here, we developed a new method to investigate the RIBE and RISBE under hypoxia using the SPICE-QST proton microbeams and a layered tissue co-culture system. Normal lung fibroblast (WI-38) and lung cancer (A549) cells were exposed in the range of 06 Gy of proton microbeams, wherein only ~0.04-0.15% of the cells were traversed by protons. Subsequently, primary bystander A549 cells were co-cultured with secondary bystander A549 cells in the presence or absence of a GJIC and NO inhibitor using co-culture systems. Studies show that there are differences in RIBE in A549 and WI-38 primary bystander cells under normoxia and hypoxia. Interestingly, treatment with a GJIC inhibitor showed an increase in the toxicity of primary bystander WI-38 cells but a decrease in A549 cells under hypoxia. Our results also show the induction of RISBE in secondary bystander A549 cells under hypoxia, where GJIC and NO inhibitors reduced the stressful effects on secondary bystander A549 cells. Together, these preliminary results, for the first time, represented the involvement of intercellular communications through GJIC in propagation of RIBE and RISBE in hypoxic cancer cells.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Alisa Kobayashi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Cuihua Liu
- Molecular and Cellular Radiation Biology Group, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
| | - Aphidet Duangya
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Masakazu Oikawa
- Electrostatic Accelerator Operation Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
| | | | - Teruaki Konishi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Kobayashi A, Hiroyama Y, Mamiya T, Oikawa M, Konishi T. The COX-2/PGE2 Response Pathway Upregulates Radioresistance in A549 Human Lung Cancer Cells through Radiation-Induced Bystander Signaling. BIOLOGY 2023; 12:1368. [PMID: 37997966 PMCID: PMC10669009 DOI: 10.3390/biology12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
This study aimed to determine the mechanism underlying the modulation of radiosensitivity in cancer cells by the radiation-induced bystander effect (RIBE). We hypothesized that the RIBE mediates cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in elevating radioresistance in unirradiated cells. In this study, we used the SPICE-QST microbeam irradiation system to target 0.07-0.7% cells by 3.4-MeV proton microbeam in the cell culture sample, such that most cells in the dish became bystander cells. Twenty-four hours after irradiation, we observed COX-2 protein upregulation in microbeam-irradiated cells compared to that of controls. Additionally, 0.29% of the microbeam-irradiated cells exhibited increased cell survival and a reduced micronucleus rate against X-ray irradiation compared to that of non-microbeam irradiated cells. The radioresistance response was diminished in both cell groups with the hemichannel inhibitor and in COX-2-knockout cells under cell-to-cell contact and sparsely distributed conditions. The results indicate that the RIBE upregulates the cell radioresistance through COX-2/PGE2 intercellular responses, thereby contributing to issues, such as the risk of cancer recurrence.
Collapse
Affiliation(s)
- Alisa Kobayashi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Taisei Mamiya
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masakazu Oikawa
- Electrostatic Accelerator Operation Section, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
3
|
Yu KN. Radiation-Induced Rescue Effect: Insights from Microbeam Experiments. BIOLOGY 2022; 11:1548. [PMID: 36358251 PMCID: PMC9687443 DOI: 10.3390/biology11111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The present paper reviews a non-targeted effect in radiobiology known as the Radiation-Induced Rescue Effect (RIRE) and insights gained from previous microbeam experiments on RIRE. RIRE describes the mitigation of radiobiological effects in targeted irradiated cells after they receive feedback signals from co-cultured non-irradiated bystander cells, or from the medium previously conditioning those co-cultured non-irradiated bystander cells. RIRE has established or has the potential of establishing relationships with other non-traditional new developments in the fields of radiobiology, including Radiation-Induced Bystander Effect (RIBE), Radiation-Induced Field Size Effect (RIFSE) and ultra-high dose rate (FLASH) effect, which are explained. The paper first introduces RIRE, summarizes previous findings, and surveys the mechanisms proposed for observations. Unique opportunities offered by microbeam irradiations for RIRE research and some previous microbeam studies on RIRE are then described. Some thoughts on future priorities and directions of research on RIRE exploiting unique features of microbeam radiations are presented in the last section.
Collapse
Affiliation(s)
- Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Autsavapromporn N, Kobayashi A, Liu C, Jaikang C, Tengku Ahmad TA, Oikawa M, Konishi T. Hypoxia and Proton microbeam: Role of Gap Junction Intercellular Communication in Inducing Bystander Responses on Human Lung Cancer Cells and Normal Cells. Radiat Res 2022; 197:122-130. [PMID: 34634126 DOI: 10.1667/rade-21-00112.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Cuihua Liu
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Masakazu Oikawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
5
|
A simple microscopy setup for visualizing cellular responses to DNA damage at particle accelerator facilities. Sci Rep 2021; 11:14528. [PMID: 34267233 PMCID: PMC8282881 DOI: 10.1038/s41598-021-92950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Cellular responses to DNA double-strand breaks (DSBs) not only promote genomic integrity in healthy tissues, but also largely determine the efficacy of many DNA-damaging cancer treatments, including X-ray and particle therapies. A growing body of evidence suggests that activation of the mechanisms that detect, signal and repair DSBs may depend on the complexity of the initiating DNA lesions. Studies focusing on this, as well as on many other radiobiological questions, require reliable methods to induce DSBs of varying complexity, and to visualize the ensuing cellular responses. Accelerated particles of different energies and masses are exceptionally well suited for this task, due to the nature of their physical interactions with the intracellular environment, but visualizing cellular responses to particle-induced damage - especially in their early stages - at particle accelerator facilities, remains challenging. Here we describe a straightforward approach for real-time imaging of early response to particle-induced DNA damage. We rely on a transportable setup with an inverted fluorescence confocal microscope, tilted at a small angle relative to the particle beam, such that cells can be irradiated and imaged without any microscope or beamline modifications. Using this setup, we image and analyze the accumulation of fluorescently-tagged MDC1, RNF168 and 53BP1-key factors involved in DSB signalling-at DNA lesions induced by 254 MeV α-particles. Our results provide a demonstration of technical feasibility and reveal asynchronous initiation of accumulation of these proteins at different individual DSBs.
Collapse
|
6
|
Kusumoto T, Ogawara R, Igawa K, Baba K, Konishi T, Furusawa Y, Kodaira S. Scaling parameter of the lethal effect of mammalian cells based on radiation-induced OH radicals: effectiveness of direct action in radiation therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:86-93. [PMID: 33313873 PMCID: PMC7779345 DOI: 10.1093/jrr/rraa111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/06/2020] [Indexed: 06/12/2023]
Abstract
We have been studying the effectiveness of direct action, which induces clustered DNA damage leading to cell killing, relative to indirect action. Here a new criterion Direct Ation-Based Biological Effectiveness (DABBLE) is proposed to understand the contribution of direct action for cell killing induced by C ions. DABBLE is defined as the ratio of direct action to indirect action. To derive this ratio, we describe survival curves of mammalian cells as a function of the number of OH radicals produced 1 ps and 100 ns after irradiation, instead of the absorbed dose. By comparing values on the vertical axis of the survival curves at a certain number of OH radicals produced, we successfully discriminate the contribution of direct action induced by C ions from that of indirect action. DABBLE increases monotonically with increasing linear energy transfer (LET) up to 140 keV/μm and then drops, when the survival curves are described by the number of OH radicals 1 ps after irradiation. The trend of DABBLE is in agreement with that of relative biological effectiveness (RBE) of indirect action. In comparison, the value of DABBLE increases monotonically with LET, when the survival curves are described by the number of OH radicals 100 ns after irradiation. This finding implies that the effectiveness of C ion therapy for cancer depends on the contribution of direct action and we can follow the contribution of direct action over time in the chemical phase.
Collapse
Affiliation(s)
- Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Ryo Ogawara
- Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata, Kita-ku, 700-8558 Okayama, Japan
| | - Kentaro Baba
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Kita-12 Nishi-5, Kita-ku, 080-0808 Hokkaido, Japan
| | - Teruaki Konishi
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Yoshiya Furusawa
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoshi Kodaira
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
7
|
Enhanced Cell Inactivation and Double-Strand Break Induction in V79 Chinese Hamster Cells by Monochromatic X-Rays at Phosphorus K-Shell Absorption Peak. QUANTUM BEAM SCIENCE 2020. [DOI: 10.3390/qubs4040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cell inactivation and DNA double-strand break (DSB) induction by K-shell ionization of phosphorus atoms and Auger electrons were investigated. Monochromatic X-rays of on and below the phosphorus K-shell absorption peak, 2.153 keV and 2.147 keV were exposed to Chinese hamster lung fibroblast V79 cells. Survival fractions were plotted against exposure, Ψ [nC/kg] and the linear-quadratic model was adapted to estimate the parameters, α and β, of the survival curves. DSB induction rate [DSB/cell/Ψ] was estimated from the measured fractions of induced DNA fragments below 4.6 Mbp (Find(k < 4.6)), which were determined using pulse field gel electrophoresis. As results, cell inactivation and DSB induction rate of on the peak were significantly higher compared to that of the below. However, when converting Ψ to absorbed dose (Gy) of cell nucleus, the enhanced effect was only observed for parameter α, and not for a survival dose (Gy) of 37%, 10%, and 1% nor for a DSB induction rate. Our findings indicate that enhancement of cell inactivation and DSB induction were due to the additional dose delivered to the DNA and more complex DSB lesions were induced due to the release of phosphorus K-shell photoelectrons and Auger electrons.
Collapse
|
8
|
Suzuki M, Uchihori Y, Kitamura H, Oikawa M, Konishi T. Biologic Impact of Different Ultra-Low-Fluence Irradiations in Human Fibroblasts. Life (Basel) 2020; 10:life10080154. [PMID: 32824801 PMCID: PMC7459653 DOI: 10.3390/life10080154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to evaluate the cellular response of healthy human fibroblasts induced by different types of ultra-low-fluence radiations, including gamma rays, neutrons and high linear energy transfer (LET) heavy ions. NB1RGB cells were pretreated with ultra-low-fluence radiations (~0.1 cGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before being exposed to an X-ray-challenging dose (1.5 Gy). Helium (LET = 2.3 keV/µm), carbon (LET = 13.3 keV/µm) and iron (LET = 200 keV/µm) ions were generated with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No differences in cell death-measured by colony-forming assay-were observed regardless of the radiation type applied. In contrast, mutation frequency, which was detected through cell transformation into 6-thioguanine resistant clones, was 1.9 and 4.0 times higher in cells pretreated with helium and carbon ions, respectively, compared to cells exposed to X-ray-challenging dose alone. Moreover, cells pretreated with iron ions or gamma-rays showed a mutation frequency similar to cells exposed to X-ray-challenging dose alone, while cells pretreated with neutrons had 0.15 times less mutations. These results show that cellular responses triggered by ultra-low-fluence irradiations are radiation-quality dependent. Altogether, this study shows that ultra-low-fluence irradiations with the same level as those reported in the International Space Station are capable of inducing different cellular responses, including radio-adaptive responses triggered by neutrons and genomic instability mediated by high-LET heavy ions, while electromagnetic radiations (gamma rays) seem to have no biologic impact.
Collapse
Affiliation(s)
- Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan
- Correspondence: ; Tel.: +81-43-206-3238
| | - Yukio Uchihori
- Department of Research Planning and Promotion, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan;
| | - Hisashi Kitamura
- Department of Radiation Emergency Management, Center for Advanced Radiation Emergency Medicine, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan;
| | - Masakazu Oikawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan;
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan;
| |
Collapse
|
9
|
Tan HQ, Koh WYC, Yeo ELL, Ang KW, Poon DJJ, Lim CP, Vajandar SK, Chen CB, Ren M, Osipowicz T, Soo KC, Chua MLK, Park SY. Dosimetric uncertainties impact on cell survival curve with low energy proton. Phys Med 2020; 76:277-284. [PMID: 32738775 DOI: 10.1016/j.ejmp.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
Abstract
There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.
| | - Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | | | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Chu Pek Lim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
10
|
Wang J, Kobayashi A, Ohsawa D, Oikawa M, Konishi T. Cytoplasmic Radiation Induced Radio-Adaptive Response in Human Lung Fibroblast WI-38 Cells. Radiat Res 2020; 194:288-297. [DOI: 10.1667/rr15575.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/09/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, HFIPS, PR China, 230031
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science
| | - Daisuke Ohsawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science
| | - Masakazu Oikawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science
| |
Collapse
|
11
|
Dong C, Tu W, He M, Fu J, Kobayashi A, Konishi T, Shao C. Role of Endoplasmic Reticulum and Mitochondrion in Proton Microbeam Radiation-Induced Bystander Effect. Radiat Res 2019; 193:63-72. [PMID: 31714866 DOI: 10.1667/rr15469.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that mitochondria and the endoplasmic reticulum (ER) play important roles in radiation response, but their functions in radiation-induced bystander effect (RIBE) are largely unclear. In this study, we found that when a small portion of cells in a population of human lung fibroblast MRC-5 cells were precisely irradiated through either the nuclei or cytoplasm with counted microbeam protons, the yield of micronuclei (MN) and the levels of intracellular reactive oxygen species (ROS) in nonirradiated cells neighboring irradiated cells were significantly increased. Mito/ER-tracker staining demonstrated that the mitochondria were clearly activated after nuclear irradiation and ER mass approached a higher level after cytoplasmic irradiation. Moreover, the radiation-induced ROS was diminished by rotenone, an inhibitor of mitochondria activation, but it was not influenced by siRNA interference of BiP, an ER regulation protein. While for nuclear irradiation, rotenone-enhanced radiation-induced ER expression, and BiP siRNA eliminated radiation-induced activation of mitochondria, these phenomena were not observed for cytoplasmic irradiation. Bystander MN was reduced by rotenone but enhanced by BiP siRNA. When the cells were treated with both rotenone and BiP siRNA, the MN yield was reduced for nuclear irradiation but was enhanced for cytoplasmic irradiation. Our results suggest that the organelles of mitochondria and ER have different roles in RIBE with respect to nuclear and cytoplasmic irradiation, and the function of ER is a prerequisite for mitochondrial activation.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Alisa Kobayashi
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences
| | - Teruaki Konishi
- Department of Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Kobayashi A, Autsavapromporn N, Ahmad TAFT, Oikawa M, Homma-Takeda S, Furusawa Y, Wang J, Konishi T. BYSTANDER WI-38 CELLS MODULATE DNA DOUBLE-STRAND BREAK REPAIR IN MICROBEAM-TARGETED A549 CELLS THROUGH GAP JUNCTION INTERCELLULAR COMMUNICATION. RADIATION PROTECTION DOSIMETRY 2019; 183:142-146. [PMID: 30535060 DOI: 10.1093/rpd/ncy249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bi-directional signaling involved in radiation-induced bystander effect (RIBE) between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to radiation cancer therapy. Using the SPICE-NIRS microbeam, we delivered 500 protons to A549-GFP lung carcinoma cells, stably expressing H2B-GFP, which were co-cultured with normal WI-38 cells. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured up to 24-h post-irradiation in both targeted and bystander cells. As a result, inhibition of gap junction intercellular communication (GJIC) attenuated DSB repair in targeted A549-GFP cells, and suppressed RIBE in bystander WI-38 cells but not in distant A549-GFP cells. This suggests that GJIC plays a two-way role through propagating DNA damage effect between carcinoma to normal cells and reversing the bystander signaling, also called 'rescue effect' from bystander cells to irradiated cells, to enhance the DSB repair in targeted cells.
Collapse
Affiliation(s)
- A Kobayashi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - N Autsavapromporn
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Division of Therapeutic Radiology and Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - T A F Tengku Ahmad
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Division of Agrotechnology and Biosciences, Malaysian Nuclear Agency, Bangi, Kajang, Malaysia
| | - M Oikawa
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - S Homma-Takeda
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Y Furusawa
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - J Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei, PR China
| | - T Konishi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| |
Collapse
|
13
|
Wang J, Konishi T. Nuclear factor (erythroid-derived 2)-like 2 antioxidative response mitigates cytoplasmic radiation-induced DNA double-strand breaks. Cancer Sci 2019; 110:686-696. [PMID: 30561156 PMCID: PMC6361566 DOI: 10.1111/cas.13916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/27/2022] Open
Abstract
It has been reported that DNA double-strand breaks (DSB) can be induced by cytoplasm irradiation, and that both reactive free radicals and mitochondria are involved in DSB formation. However, the cellular antioxidative responses that are stimulated and the biological consequences of cytoplasmic irradiation remain unknown. Using the Single Particle Irradiation system to Cell (SPICE) proton microbeam facility at the National Institute of Radiological Sciences ([NIRS] Japan), the response of nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidative signaling to cytoplasmic irradiation was studied in normal human lung fibroblast WI-38 cells. Cytoplasmic irradiation stimulated the localization of NRF2 to the nucleus and the expression of its target protein, heme oxygenase 1. Activation of NRF2 by tert-butylhydroquinone mitigated the levels of DSB induced by cytoplasmic irradiation. Mitochondrial fragmentation was also promoted by cytoplasmic irradiation, and treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed cytoplasmic irradiation-induced NRF2 activation and aggravated DSB formation. Furthermore, p53 contributed to the induction of mitochondrial fragmentation and activation of NRF2, although the expression of p53 was significantly downregulated by cytoplasmic irradiation. Finally, mitochondrial superoxide (MitoSOX) production was enhanced under cytoplasmic irradiation, and use of the MitoSOX scavenger mitoTEMPOL indicated that MitoSOX caused alterations in p53 expression, mitochondrial dynamics, and NRF2 activation. Overall, NRF2 antioxidative response is suggested to play a key role against genomic DNA damage under cytoplasmic irradiation. Additionally, the upstream regulators of NRF2 provide new clues on cytoplasmic irradiation-induced biological processes and prevention of radiation risks.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,SPICE-NIRS Research Core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Teruaki Konishi
- SPICE-NIRS Research Core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Department of Basic Medical Sciences for Radiation Damages, NIRS, QST, Chiba, Japan
| |
Collapse
|
14
|
Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys 2018; 45:e925-e952. [PMID: 30421808 DOI: 10.1002/mp.13207] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND SIGNIFICANCE The application of heavy ion beams in cancer therapy must account for the increasing relative biological effectiveness (RBE) with increasing penetration depth when determining dose prescriptions and organ at risk (OAR) constraints in treatment planning. Because RBE depends in a complex manner on factors such as the ion type, energy, cell and tissue radiosensitivity, physical dose, biological endpoint, and position within and outside treatment fields, biophysical models reflecting these dependencies are required for the personalization and optimization of treatment plans. AIM To review and compare three mechanism-inspired models which predict the complexities of particle RBE for various ion types, energies, linear energy transfer (LET) values and tissue radiation sensitivities. METHODS The review of models and mechanisms focuses on the Local Effect Model (LEM), the Microdosimetric-Kinetic (MK) model, and the Repair-Misrepair-Fixation (RMF) model in combination with the Monte Carlo Damage Simulation (MCDS). These models relate the induction of potentially lethal double strand breaks (DSBs) to the subsequent interactions and biological processing of DSB into more lethal forms of damage. A key element to explain the increased biological effectiveness of high LET ions compared to MV x rays is the characterization of the number and local complexity (clustering) of the initial DSB produced within a cell. For high LET ions, the spatial density of DSB induction along an ion's trajectory is much greater than along the path of a low LET electron, such as the secondary electrons produced by the megavoltage (MV) x rays used in conventional radiation therapy. The main aspects of the three models are introduced and the conceptual similarities and differences are critiqued and highlighted. Model predictions are compared in terms of the RBE for DSB induction and for reproductive cell survival. RESULTS AND CONCLUSIONS Comparisons of the RBE for DSB induction and for cell survival are presented for proton (1 H), helium (4 He), and carbon (12 C) ions for the therapeutically most relevant range of ion beam energies. The reviewed models embody mechanisms of action acting over the spatial scales underlying the biological processing of potentially lethal DSB into more lethal forms of damage. Differences among the number and types of input parameters, relevant biological targets, and the computational approaches among the LEM, MK and RMF models are summarized and critiqued. Potential experiments to test some of the seemingly contradictory aspects of the models are discussed.
Collapse
Affiliation(s)
- Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Michael P Butkus
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Roland Hawkins
- Radiation Oncology Center, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | | | | |
Collapse
|
15
|
Autsavapromporn N, Liu C, Kobayashi A, Ahmad TAFT, Oikawa M, Dukaew N, Wang J, Wongnoppavichb A, Konishic T. Emerging Role of Secondary Bystander Effects Induced by Fractionated Proton Microbeam Radiation. Radiat Res 2018; 191:211-216. [PMID: 30526323 DOI: 10.1667/rr15155.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- a Division of Radiation Oncology, Department of Radiology.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Cuihua Liu
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Alisa Kobayashi
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Tengku Ahbrizal Farizal Tengku Ahmad
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan.,d Division of Agrotechnology and Biosciences, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Malaysia
| | - Masakazu Oikawa
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Nahathai Dukaew
- b Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Jun Wang
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan.,e Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Ariyaphong Wongnoppavichb
- b Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Teruaki Konishic
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| |
Collapse
|
16
|
Farr JB, Moskvin V, Lukose RC, Tuomanen S, Tsiamas P, Yao W. Development, commissioning, and evaluation of a new intensity modulated minibeam proton therapy system. Med Phys 2018; 45:4227-4237. [PMID: 30009481 DOI: 10.1002/mp.13093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To invent, design, construct, and commission an intensity modulated minibeam proton therapy system (IMMPT) without the need for physical collimation and to compare its resulting conformity to a conventional IMPT system. METHODS A proton therapy system (Hitachi, Ltd, Hitachi City, Japan; Model: Probeat-V) was specially modified to produce scanned minibeams without collimation. We performed integral depth dose acquisitions and calibrations using a large diameter parallel-plate ionization chamber in a scanning water phantom (PTW, Freiburg, Germany; Models: Bragg Peak ionization chamber, MP3-P). Spot size and shape was measured using radiochromic film (Ashland Advanced Materials, Bridgewater NJ; Type: EBT3), and a synthetic diamond diode type scanned point by point in air (PTW Models: MicroDiamond, MP3-P). The measured data were used as inputs to generate a Monte Carlo-based model for a commercial radiotherapy planning system (TPS) (Varian Medical Systems, Inc., Palo Alto, CA; Model: Eclipse v13.7.15). The regular ProBeat-V system (sigma ~2.5 mm) TPS model was available for comparison. A simulated base of skull case with small and medium targets proximal to brainstem was planned for both systems and compared. RESULTS The spot sigma is determined to be 1.4 mm at 221 MeV at the isocenter and below 1 mm at proximal distances. Integral depth doses were indistinguishable from the standard spot commissioning data. The TPS fit the spot profiles closely, giving a residual error maximum of 2.5% in the spot penumbra tails (below 5% of maximum) from the commissioned energies 69.4 to 221.3 MeV. The resulting IMMPT plans were more conformal than the IMPT plans due to a sharper dose gradient (90-10%) 1.5 mm smaller for the small target, and 1.3 mm for the large target, at a representative central axial water equivalent depth of 7 cm. CONCLUSIONS We developed, implemented, and tested a new IMMPT system. The initial results look promising in cases where treatments can benefit from additional dose sparing to neighboring sensitive structures.
Collapse
Affiliation(s)
- J B Farr
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - V Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - R C Lukose
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - S Tuomanen
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - P Tsiamas
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - W Yao
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| |
Collapse
|
17
|
Ghita M, Fernandez-Palomo C, Fukunaga H, Fredericia PM, Schettino G, Bräuer-Krisch E, Butterworth KT, McMahon SJ, Prise KM. Microbeam evolution: from single cell irradiation to pre-clinical studies. Int J Radiat Biol 2018; 94:708-718. [PMID: 29309203 DOI: 10.1080/09553002.2018.1425807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on pre-clinical modalities and translation towards clinical application. CONCLUSIONS The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons. In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localized dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT).
Collapse
Affiliation(s)
- Mihaela Ghita
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | | | - Hisanori Fukunaga
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Pil M Fredericia
- c Centre for Nuclear Technologies , Technical University of Denmark , Roskilde , Denmark
| | | | | | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| |
Collapse
|
18
|
Enhanced DNA double-strand break repair of microbeam targeted A549 lung carcinoma cells by adjacent WI38 normal lung fibroblast cells via bi-directional signaling. Mutat Res 2017; 803-805:1-8. [PMID: 28689138 DOI: 10.1016/j.mrfmmm.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
Abstract
Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi-directional signaling had extended a profound influence on cellular sensitivity to radiation as well as the sensitivity to RIBE.
Collapse
|
19
|
Muggiolu G, Pomorski M, Claverie G, Berthet G, Mer-Calfati C, Saada S, Devès G, Simon M, Seznec H, Barberet P. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites. Sci Rep 2017; 7:41764. [PMID: 28139723 PMCID: PMC5282495 DOI: 10.1038/srep41764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
As well as being a significant source of environmental radiation exposure, α-particles are increasingly considered for use in targeted radiation therapy. A better understanding of α-particle induced damage at the DNA scale can be achieved by following their tracks in real-time in targeted living cells. Focused α-particle microbeams can facilitate this but, due to their low energy (up to a few MeV) and limited range, α-particles detection, delivery, and follow-up observations of radiation-induced damage remain difficult. In this study, we developed a thin Boron-doped Nano-Crystalline Diamond membrane that allows reliable single α-particles detection and single cell irradiation with negligible beam scattering. The radiation-induced responses of single 3 MeV α-particles delivered with focused microbeam are visualized in situ over thirty minutes after irradiation by the accumulation of the GFP-tagged RNF8 protein at DNA damaged sites.
Collapse
Affiliation(s)
- Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Michal Pomorski
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Gérard Claverie
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Guillaume Berthet
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | | | - Samuel Saada
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| |
Collapse
|
20
|
Morishita M, Muramatsu T, Suto Y, Hirai M, Konishi T, Hayashi S, Shigemizu D, Tsunoda T, Moriyama K, Inazawa J. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 2016; 7:10182-92. [PMID: 26862731 PMCID: PMC4891112 DOI: 10.18632/oncotarget.7186] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 12/11/2022] Open
Abstract
Chromothripsis is the massive but highly localized chromosomal rearrangement in response to a one-step catastrophic event, rather than an accumulation of a series of subsequent and random alterations. Chromothripsis occurs commonly in various human cancers and is thought to be associated with increased malignancy and carcinogenesis. However, the causes and consequences of chromothripsis remain unclear. Therefore, to identify the mechanism underlying the generation of chromothripsis, we investigated whether chromothripsis could be artificially induced by ionizing radiation. We first elicited DNA double-strand breaks in an oral squamous cell carcinoma cell line HOC313-P and its highly metastatic subline HOC313-LM, using Single Particle Irradiation system to Cell (SPICE), a focused vertical microbeam system designed to irradiate a spot within the nuclei of adhesive cells, and then established irradiated monoclonal sublines from them, respectively. SNP array analysis detected a number of chromosomal copy number alterations (CNAs) in these sublines, and one HOC313-LM-derived monoclonal subline irradiated with 200 protons by the microbeam displayed multiple CNAs involved locally in chromosome 7. Multi-color FISH showed a complex translocation of chromosome 7 involving chromosomes 11 and 12. Furthermore, whole genome sequencing analysis revealed multiple de novo complex chromosomal rearrangements localized in chromosomes 2, 5, 7, and 20, resembling chromothripsis. These findings suggested that localized ionizing irradiation within the nucleus may induce chromothripsis-like complex chromosomal alterations via local DNA damage in the nucleus.
Collapse
Affiliation(s)
- Maki Morishita
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yumiko Suto
- Biodosimetry Research Team, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Momoki Hirai
- Biodosimetry Research Team, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Shigemizu
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Georgantzoglou A, Merchant MJ, Jeynes JCG, Mayhead N, Punia N, Butler RE, Jena R. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams. Front Oncol 2016; 5:305. [PMID: 26835414 PMCID: PMC4724960 DOI: 10.3389/fonc.2015.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.
Collapse
Affiliation(s)
| | - Michael J. Merchant
- Manchester Academic Health Science Centre, Institute of Cancer Sciences, University of Manchester, The Christie NHS Foundations Trust, Manchester, UK
| | | | | | - Natasha Punia
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rachel E. Butler
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rajesh Jena
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology. RADIATION PROTECTION DOSIMETRY 2015; 166:182-187. [PMID: 25911406 DOI: 10.1093/rpd/ncv192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology.
Collapse
Affiliation(s)
- P Barberet
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| | - H Seznec
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| |
Collapse
|
23
|
Liu Y, Kobayashi A, Fu Q, Yang G, Konishi T, Uchihori Y, Hei TK, Wang Y. Rescue of Targeted Nonstem-Like Cells from Bystander Stem-Like Cells in Human Fibrosarcoma HT1080. Radiat Res 2015; 184:334-40. [PMID: 26295845 DOI: 10.1667/rr14050.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer stem-like cells (CSCs) have been suggested to be the principal cause of tumor radioresistance, dormancy and recurrence after radiotherapy. However, little is known about CSC behavior in response to clinical radiotherapy, particularly with regard to CSC communication with bulk cancer cells. In this study, CSCs and nonstem-like cancer cells (NSCCs) were co-cultured, and defined cell types were chosen and irradiated, respectively, with proton microbeam. The bidirectional rescue effect in the combinations of the two cell types was then investigated. The results showed that out of all four combinations, only the targeted, proton irradiated NSCCs were protected by bystander CSCs and showed less accumulation of 53BP1, which is a widely used indicator for DNA double-strand breaks. In addition, supplementation with c-PTIO, a specific nitric oxide scavenger, can show a similar effect on targeted NSCCs. These results, showed that the rescue effect of CSCs on targeted NSCCs involves nitric oxide in the process, suggesting that the cellular communication between CSCs and NSCCs may be important in determining the survival of tumor cells after radiation therapy. To our knowledge, this is the first report demonstrating a rescue effect of CSCs to irradiated NSCCs that may help us better understand CSC behavior in response to cancer radiotherapy.
Collapse
Affiliation(s)
- Yu Liu
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.,b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Qibin Fu
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Gen Yang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.,b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Yukio Uchihori
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Tom K Hei
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,d Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Yugang Wang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
24
|
Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y. Single proton counting at the RIKEN cell irradiation facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:085103. [PMID: 26329229 DOI: 10.1063/1.4927718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.
Collapse
Affiliation(s)
- V Mäckel
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - N Puttaraksa
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T Kobayashi
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - Y Yamazaki
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| |
Collapse
|
25
|
Kodaira S, Konishi T, Kobayashi A, Maeda T, Ahmad TAFT, Yang G, Akselrod MS, Furusawa Y, Uchihori Y. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector. JOURNAL OF RADIATION RESEARCH 2015; 56:360-365. [PMID: 25324538 PMCID: PMC4380042 DOI: 10.1093/jrr/rru091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/03/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.
Collapse
Affiliation(s)
- Satoshi Kodaira
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Takeshi Maeda
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | | | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, PR China
| | - Mark S Akselrod
- Landauer Inc., Crystal Growth Division, Stillwater, OK 74074, USA
| | - Yoshiya Furusawa
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| |
Collapse
|
26
|
Liu Y, Kobayashi A, Maeda T, Fu Q, Oikawa M, Yang G, Konishi T, Uchihori Y, Hei TK, Wang Y. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells. Mutat Res 2015; 773:43-7. [PMID: 25769186 DOI: 10.1016/j.mrfmmm.2015.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/10/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022]
Abstract
Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 P.R. China; Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan; Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Maeda
- Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Qibin Fu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 P.R. China
| | - Masakazu Oikawa
- Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 P.R. China; Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.
| | - Teruaki Konishi
- Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan; Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.
| | - Yukio Uchihori
- Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan; Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Tom K Hei
- Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan; Center for Radiological Research, Columbia, VC11-205, 630 West 168th Street, New York, NY 10032, United States
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 P.R. China
| |
Collapse
|
27
|
Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, Azzam EI, Murakami T, Suzuki M. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: The relevance to cancer risk. Int J Radiat Biol 2014; 91:62-70. [DOI: 10.3109/09553002.2014.950715] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutat Res 2014; 763-764:39-44. [PMID: 24680692 DOI: 10.1016/j.mrfmmm.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.
Collapse
Affiliation(s)
- Sejal Desai
- Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Alisa Kobayashi
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masakazu Oikawa
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Badri N Pandey
- Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
29
|
Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima TM, Imamoto N, Ogiwara K, Yamazaki Y. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:014302. [PMID: 24517788 DOI: 10.1063/1.4859499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.
Collapse
Affiliation(s)
- V Mäckel
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - W Meissl
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T Ikeda
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - M Clever
- Cellular Dynamics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - E Meissl
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T Kobayashi
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T M Kojima
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - N Imamoto
- Cellular Dynamics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - K Ogiwara
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - Y Yamazaki
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| |
Collapse
|