1
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
2
|
Yang KH, Yen CY, Wang SC, Chang FR, Chang MY, Chan CK, Jeng JH, Tang JY, Chang HW. 6- n-Butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.0 2,7]trideca-2,4,6,10-tetraene Improves the X-ray Sensitivity on Inhibiting Proliferation and Promoting Oxidative Stress and Apoptosis of Oral Cancer Cells. Biomedicines 2024; 12:458. [PMID: 38398060 PMCID: PMC10887088 DOI: 10.3390/biomedicines12020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chieh-Kai Chan
- Department of Chemistry, University of Illinois Urbana, Champaign, IL 61820, USA;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells. Br J Cancer 2022; 127:350-363. [PMID: 35365766 PMCID: PMC9296661 DOI: 10.1038/s41416-022-01789-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
Background The naturally occurring amino acid 5-aminolevulinic acid (5-ALA) is a precursor of protoporphyrin IX (PpIX) biosynthesised in the mitochondria. When accumulated PpIX is excited by light (wavelength of 625–635 nm), reactive oxygen species (ROS) are generated. Here, we investigated whether 5-ALA may increase the sensitisation of prostate cancer (PCA) cells to radiotherapy through the generation of ROS via its metabolite, PpIX. Methods Effect of 5-ALA on PC-3 and DU-145 PCA cell lines treated with ionising radiation (IR) was examined in vitro and in vivo with assessment by clonogenic assay, mitochondrial function and ROS production under normoxia or hypoxia condition. Results 5-ALA enhanced intra-mitochondrial ROS production immediately after exposure to IR and decreased mitochondrial membrane potential via increase of intra-cellular PpIX. IR with 5-ALA induced mitochondrial dysfunction and increased ATP production, switching energy metabolism to the quiescence. Under hypoxic condition, ROS burst and mitochondrial dysfunction were induced by IR with 5-ALA resulting reducing cancer stemness and radiation resistance. Conclusion These results suggest that combined therapy with 5-ALA and radiation therapy is a novel strategy to improve the anti-cancer effects of radiation therapy for PCA.
Collapse
|
4
|
The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells. Life (Basel) 2021; 11:life11121295. [PMID: 34947826 PMCID: PMC8708735 DOI: 10.3390/life11121295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
We demonstrated that low dose pulsed radiation (0.25 Gy) at a high-dose-rate, even for very short intervals (10 s), decreases cell survival to a greater extent than single exposure to a similar total dose and dose rate. The objective of this study was to clarify whether high-dose-rate pulsed radiation is effective against SAS-R, a clinically relevant radioresistant cell line. Cell survival following high-dose-rate pulsed radiation was evaluated via a colony assay. Flow cytometry was utilized to evaluate γH2AX, a molecular marker of DNA double-strand breaks and delayed reactive oxygen species (ROS) associated with radiation-induced apoptosis. Increased cytotoxicity was observed in SAS-R and parent SAS cells in response to high dose rate pulsed radiation compared to single dose, as determined by colony assays. Residual γH2AX in both cells subjected to high-dose-rate pulsed radiation showed a tendency to increase, with a significant increase observed in SAS cells at 72 h. In addition, high-dose-rate pulsed radiation increased delayed ROS more than the single exposure did. These results indicate that high-dose-rate pulsed radiation was associated with residual γH2AX and delayed ROS, and high-dose-rate pulsed radiation may be used as an effective radiotherapy procedure against radioresistant cells.
Collapse
|
5
|
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. JOURNAL OF RADIATION RESEARCH 2021; 62:782-792. [PMID: 34265852 PMCID: PMC8438247 DOI: 10.1093/jrr/rrab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a sensor of nutrient status and plays an important role in cell growth and metabolism. Although inhibition of mTOR signaling promotes tumor cell death and several mTOR inhibitors have been used clinically, recent reports have shown that co-treatment with MHY1485, an mTOR activator, enhances the anti-cancer effects of anti-PD-1 antibody and 5-fluorouracil. However, it remains unclear whether MHY1485 treatment alters the effects of radiation on tumor cells. In this study, the radiosensitizing effects of MHY1485 were investigated using murine CT26 and LLC cell lines. We examined mTOR signaling, tumor cell growth, colony formation, apoptosis, senescence, oxidative stress, p21 accumulation and endoplasmic reticulum (ER) stress levels in cells treated with MHY1485 and radiation, either alone or together. We found that MHY1485 treatment inhibited growth and colony formation in both cell lines under irradiation and no-irradiation conditions, results that were not fully consistent with MHY1485's known role in activating mTOR signaling. Furthermore, we found that combined treatment with MHY1485 and radiation significantly increased apoptosis and senescence in tumor cells in association with oxidative stress, ER stress and p21 stabilization, compared to radiation treatment alone. Our results suggested that MHY1485 enhances the radiosensitivity of tumor cells by a mechanism that may differ from MHY1485's role in mTOR activation.
Collapse
Affiliation(s)
- Lue Sun
- Corresponding author. Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Tel: +81-29-849-1564; Fax: +81-29-861-6149; E-mail:
| | - Kumi Morikawa
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Sugiura
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa 761-0895, Japan
| |
Collapse
|
6
|
Rickard AG, Zhuang M, DeRosa CA, Zhang X, Dewhirst MW, Fraser CL, Palmer GM. Dual-emissive, oxygen-sensing boron nanoparticles quantify oxygen consumption rate in breast cancer cells. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200174RR. [PMID: 33231018 PMCID: PMC7682476 DOI: 10.1117/1.jbo.25.11.116504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Decreasing the oxygen consumption rate (OCR) of tumor cells is a powerful method for ameliorating tumor hypoxia. However, quantifying the change in OCR is challenging in complex experimental systems. AIM We present a method for quantifying the OCR of two tumor cell lines using oxygen-sensitive dual-emissive boron nanoparticles (BNPs). We hypothesize that our BNP results are equivalent to the standard Seahorse assay. APPROACH We quantified the spectral emissions of the BNP and accounted for external oxygen diffusion to quantify OCR over 24 h. The BNP-computed OCR of two breast cancer cell lines, E0771 and 4T07, were compared with their respective Seahorse assays. Both cell lines were also irradiated to quantify radiation-induced changes in the OCR. RESULTS Using a Bland-Altman analysis, our BNPs OCR was equivalent to the standard Seahorse assay. Moreover, in an additional experiment in which we irradiated the cells at their 50% survival fraction, the BNPs were sensitive enough to quantify 24% reduction in OCR after irradiation. CONCLUSIONS Our results conclude that the BNPs are a viable alternative to the Seahorse assay for quantifying the OCR in cells. The Bland-Altman analysis showed that these two methods result in equivalent OCR measurements. Future studies will extend the OCR measurements to complex systems including 3D cultures and in vivo models, in which OCR measurements cannot currently be made.
Collapse
Affiliation(s)
- Ashlyn G. Rickard
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Meng Zhuang
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Christopher A. DeRosa
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Xiaojie Zhang
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Mark W. Dewhirst
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Cassandra L. Fraser
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Gregory M. Palmer
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
7
|
Chen Y, Gao P, Wu T, Pan W, Li N, Tang B. Organelle-localized radiosensitizers. Chem Commun (Camb) 2020; 56:10621-10630. [DOI: 10.1039/d0cc03245j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This feature article highlights the recent advances of organelle-localized radiosensitizers and discusses the current challenges and future directions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Peng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Tong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|
8
|
Sun L, Igarashi T, Tetsuka R, Li YS, Kawasaki Y, Kawai K, Hirakawa H, Tsuboi K, Nakamura AJ, Moritake T. Pilot clinical study of ascorbic acid treatment in cardiac catheterization. JOURNAL OF RADIATION RESEARCH 2019; 60:573-578. [PMID: 31251351 PMCID: PMC6805981 DOI: 10.1093/jrr/rrz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Clinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation. Therefore, treatment with anti-oxidants and/or radical scavengers is considered to be effective in achieving a good balance between image quality and damage. However, few studies have examined the effect of using radical scavengers to reduce radiation damage in the clinical setting. In this study, we administrated 20 mg/kg ascorbic acid (AA) to patients before cardiac catheterization (CC) for diagnostic purposes. We analyzed changes in the number of phosphorylated H2AX (γH2AX) foci (a marker of DNA double-strand breaks) in lymphocytes, red blood cell glutathione levels, blood cell counts, and biochemical parameters. Unfortunately, we did not find satisfactory evidence to show that AA treatment reduces γH2AX foci formation immediately after CC. AA treatment did, however, cause a higher reduced/oxidized glutathione ratio than in the control arm immediately after CC. This is a preliminary study, but this result suggests that reducing radiation damage in clinical practice can be achieved using a biological approach.
Collapse
Affiliation(s)
- Lue Sun
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Tomonori Igarashi
- Iwamoto Hospital, 1-2-8 Shimoishida, Kokuraminami-ku Kitakyushu, Fukuoka, Japan
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Ryoya Tetsuka
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Haruhisa Hirakawa
- Department of Cardiology, Social Insurance Nogata Hospital, 1-1 Susakimachi, Nogata, Fukuoka, Japan
| | - Koji Tsuboi
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
9
|
Tang JY, Shu CW, Wang CL, Wang SC, Chang MY, Lin LC, Chang HW. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol 2019; 95:1226-1235. [PMID: 31141432 DOI: 10.1080/09553002.2019.1625490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 μg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University , Kaohsiung , Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Bioresource Collection and Research Center , Hsinchu , Taiwan
| | - Sheng-Chieh Wang
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center , Tainan , Taiwan.,School of Medicine, Taipei Medical University , Taipei , Taiwan.,Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Hsueh-Wei Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
10
|
Yamamoto K, Ikenaka Y, Ichise T, Bo T, Ishizuka M, Yasui H, Hiraoka W, Yamamori T, Inanami O. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR. Free Radic Res 2018; 52:648-660. [PMID: 29620489 DOI: 10.1080/10715762.2018.1460472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF2α and 5-iPF2α-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 × ADP]/[ATP + ADP + AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoshinori Ikenaka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Takahiro Ichise
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Mayumi Ishizuka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Hironobu Yasui
- c Central Institute of Isotope Science , Hokkaido University , Sapporo , Japan
| | - Wakako Hiraoka
- d Laboratory of Biophysics , School of Science and Technology, Meiji University , Kawasaki , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
11
|
Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS One 2018; 13:e0195151. [PMID: 29649284 PMCID: PMC5896924 DOI: 10.1371/journal.pone.0195151] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The sodium-independent cystine-glutamate antiporter plays an important role in extracellular cystine uptake. It comprises the transmembrane protein, xCT and its chaperone, CD98. Because glutathione is only weakly cell membrane permeable, cellular uptake of its precursor, cystine, is known to be a key step in glutathione synthesis. Moreover, it has been reported that xCT expression affects the progression of tumors and their resistance to therapy. Sulfasalazine is an inhibitor of xCT that is known to increase cellular oxidative stress, giving it anti-tumor potential. Here, we describe a radio-sensitizing effect of sulfasalazine using a B16F10 melanoma model. Sulfasalazine decreased glutathione concentrations and resistance to H2O2 in B16F10 melanoma cells, but not in mouse embryonic fibroblasts. It synergistically enhanced the cyto-killing effect of X-irradiation in B16F10 cells. It inhibited cellular DNA damage repair and prolonged cell cycle arrest after X-irradiation. Furthermore, in an in vivo transplanted melanoma model, sulfasalazine decreased intratumoral glutathione content, leading to enhanced susceptibility to radiation therapy. These results suggest the possibility of using SAS to augment the treatment of radio-resistant cancers.
Collapse
|
12
|
Nagane M, Kuppusamy ML, An J, Mast JM, Gogna R, Yasui H, Yamamori T, Inanami O, Kuppusamy P. Ataxia-Telangiectasia Mutated (ATM) Kinase Regulates eNOS Expression and Modulates Radiosensitivity in Endothelial Cells Exposed to Ionizing Radiation. Radiat Res 2018; 189:519-528. [PMID: 29474156 DOI: 10.1667/rr14781.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endothelial nitric oxide synthase (eNOS), a constitutive enzyme expressed in vascular endothelial cells, is the main source of nitric oxide (NO), which plays key roles in diverse biological functions, including regulation of vascular tone. Exposure to radiation has been known to generate nitric oxide from eNOS; however, the precise mechanism of its generation and function is not known. The goal of this study was to determine the involvement of radiation-induced DNA damage response (DDR) on eNOS transcription and its effect on cell survival after irradiation. Irradiated bovine aortic endothelial cells showed increased eNOS transcription and NO generation through upregulation of ataxia-telangiectasia mutated (ATM) kinase. Radiation exposure induced NO inhibited cell death, as well as induced cellular senescence postirradiation. This study established that radiation-induced DDR uses ATM kinase to upregulate eNOS transcription and NO generation, leading to cellular senescence, which may play a critical role in radiation-mediated cardiovascular injury.
Collapse
Affiliation(s)
- Masaki Nagane
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,c Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - M Lakshmi Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jennifer An
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jesse M Mast
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Rajan Gogna
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,d Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Hironobu Yasui
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tohru Yamamori
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Inanami
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Periannan Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
13
|
Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels. Oncotarget 2018; 7:68170-68178. [PMID: 27626688 PMCID: PMC5356547 DOI: 10.18632/oncotarget.11906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy is generally applied in the treatment of esophageal squamous cell carcinoma (ESCC). However, the radioresistance of ESCC still remains an obstacle for the curative effect of this treatment. We hypothesized that diisopropylamine dichloroacetate (DADA), an inhibitor of pyruvate dehydrogenase kinase (PDK), might enhance radiosensitizationin resistant ESCC. The clonogenic survival assay revealed that DADA sensitized ESCC cells to radiotherapy in vitro; furthermore, the combination of DADA and radiotherapy increased the expression of γ-H2AX, which is a hallmark of DNA double-strand breaks. Arrest at G2/M phase as well as the induction of apoptosis of ESCC cells were also observed in the cells treated with the combination of DADA and radiotherapy. Notably, xenograft tumor growth was significantly suppressed in vivo by combined radiotherapy and DADA administration. It has been proven that glycolysis is highly correlated with radioresistance, which could be reversed by the shift from glycolysis to mitochondrial oxidation. In our present study, we found that DADA could modulate oxidative phosphorylation as well as increase the intracellular levels of reactive oxygen species (ROS). Collectively, we concluded that DADA-induced intracellular ROS accumulation was identified as the key factor of radiotherapy sensitization of ESCC.
Collapse
|
14
|
Monitoring Mitochondrial Complex-I Activity Using Novel PET Probe 18F-BCPP-EF Allows Early Detection of Radiotherapy Effect in Murine Squamous Cell Carcinoma. PLoS One 2017; 12:e0170911. [PMID: 28125711 PMCID: PMC5268465 DOI: 10.1371/journal.pone.0170911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives Aerobic glycolysis, the main pathway of energy production in tumors (Warburg effect) allows detection of tumors by positron emission tomography (PET) using 18F-fluoro-2-deoxy-D-glucose (18F-FDG). Since ionizing radiation (IR) is reported to switch aerobic glycolysis to mitochondrial oxidative phosphorylation, radiotherapeutic efficacy was monitored by the activity of mitochondrial complex I (MC-I), using a new PET probe 18F-BCPP-EF, 18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoro-ethoxy)-ethoxy] -pyridine-3-ylmethoxy}-2H-pyridazin-3-one, compared with 18F-FDG uptake and the apoptosis index. Methods Tumor uptake of 18F-BCPP-EF or 18F-FDG was examined in C3H/HeN mice inoculated with murine squamous cell carcinoma SCCVII at various time points after a single dose of x-ray irradiation at 0, 6, 15, or 30 Gy. Apoptosis incidence was determined by TUNEL staining in excised tumor tissue. Results Tumor growth suppression was dose-dependent; tumor grew 10-fold (0 Gy), 5-fold (6 Gy), 2-fold (15 Gy), and reduced to half in its volume (30 Gy) 14 days after treatment. 18F-BCPP-EF uptake was significantly increased as early as 3 days after 15 Gy or 30 Gy, when tumor size and apoptosis index showed no difference among radiation doses. In contrast, 18F-FDG uptake was initially increased dose-dependently, remained elevated up to 7 days, and eventually decreased 10 days after 30 Gy and also 14 days after 15 Gy when tumor size was already reduced. Apoptosis index was increased after irradiation but failed to correlate with tumor response. Conclusion Tumor uptake of 18F-BCPP-EF was increased dose-dependently early after effective doses of IR when 18F-FDG uptake as well as apoptosis incidence were not indicative of tumor response. The results suggest that 18F-BCPP-EF is a promising “positive” MC-I imaging PET probe for early detection of efficacy of tumor radiotherapy.
Collapse
|