1
|
Moradi F, Khandaker M, Abdul Sani S, Uguru E, Sulieman A, Bradley D. Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Bazyar S, Inscoe CR, O’Brian ET, Zhou O, Lee YZ. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies. ACTA ACUST UNITED AC 2017; 62:8924-8942. [DOI: 10.1088/1361-6560/aa926b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Bazyar S, Inscoe CR, Benefield T, Zhang L, Lu J, Zhou O, Lee YZ. Neurocognitive sparing of desktop microbeam irradiation. Radiat Oncol 2017; 12:127. [PMID: 28800740 PMCID: PMC5554005 DOI: 10.1186/s13014-017-0864-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Normal tissue toxicity is the dose-limiting side effect of radiotherapy. Spatial fractionation irradiation techniques, like microbeam radiotherapy (MRT), have shown promising results in sparing the normal brain tissue. Most MRT studies have been conducted at synchrotron facilities. With the aim to make this promising treatment more available, we have built the first desktop image-guided MRT device based on carbon nanotube x-ray technology. In the current study, our purpose was to evaluate the effects of MRT on the rodent normal brain tissue using our device and compare it with the effect of the integrated equivalent homogenous dose. METHODS Twenty-four, 8-week-old male C57BL/6 J mice were randomly assigned to three groups: MRT, broad-beam (BB) and sham. The hippocampal region was irradiated with two parallel microbeams in the MRT group (beam width = 300 μm, center-to-center = 900 μm, 160 kVp). The BB group received the equivalent integral dose in the same area of their brain. Rotarod, marble burying and open-field activity tests were done pre- and every month post-irradiation up until 8 months to evaluate the cognitive changes and potential irradiation side effects on normal brain tissue. The open-field activity test was substituted by Barnes maze test at 8th month. A multilevel model, random coefficients approach was used to evaluate the longitudinal and temporal differences among treatment groups. RESULTS We found significant differences between BB group as compared to the microbeam-treated and sham mice in the number of buried marble and duration of the locomotion around the open-field arena than shams. Barnes maze revealed that BB mice had a lower capacity for spatial learning than MRT and shams. Mice in the BB group tend to gain weight at the slower pace than shams. No meaningful differences were found between MRT and sham up until 8-month follow-up using our measurements. CONCLUSIONS Applying MRT with our newly developed prototype compact CNT-based image-guided MRT system utilizing the current irradiation protocol can better preserve the integrity of normal brain tissue. Consequently, it enables applying higher irradiation dose that promises better tumor control. Further studies are required to evaluate the full extent effects of this novel modality.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 350 Chapman Hall, 4Chapel Hill, NC, 27599, USA.
| | - Christina R Inscoe
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thad Benefield
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Lei Zhang
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Jianping Lu
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yueh Z Lee
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 350 Chapman Hall, 4Chapel Hill, NC, 27599, USA. .,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Department of Radiology, The University of North Carolina at Chapel Hill, CB#7510, Chapel Hill, NC, 27599, USA.
| |
Collapse
|