1
|
Spatola GJ, Ostrander EA, Mousseau TA. The effects of ionizing radiation on domestic dogs: a review of the atomic bomb testing era. Biol Rev Camb Philos Soc 2021; 96:1799-1815. [PMID: 33987930 PMCID: PMC8429057 DOI: 10.1111/brv.12723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Dogs were frequently employed as laboratory subjects during the era of atomic bomb testing (1950–1980), particularly in studies used to generate predictive data regarding the expected effects of accidental human occupational exposure to radiation. The bulk of these studies were only partly reported in the primary literature, despite providing vital information regarding the effects of radiation exposure on a model mammalian species. Herein we review this literature and summarize the biological effects in relation to the isotopes used and the method of radionuclide exposure. Overall, these studies demonstrate the wide range of developmental and physiological effects of exposure to radiation and radionuclides in a mid‐sized mammal.
Collapse
Affiliation(s)
- Gabriella J Spatola
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, U.S.A.,Graduate Partnerships Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, U.S.A.,SURA/LASSO/NASA, ISS Utilization and Life Sciences Division, Kennedy Space Center, Cape Canaveral, FL, 32899, U.S.A
| |
Collapse
|
2
|
Zhen S, Qiang R, Lu J, Tuo X, Yang X, Li X. TGF-β1-based CRISPR/Cas9 gene therapy attenuate Radiation-induced Lung Injury. Curr Gene Ther 2020; 22:59-65. [PMID: 33380298 DOI: 10.2174/1566523220666201230100523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is lacking effective therapeutic strategies. In this study, we conducted TGF-β1-based CRISPR/Cas9 gene therapy for RILI. OBJECTIVES Mouse lungs were irradiated with a single-dose of 20-Gy gamma rays followed by intravenous administration of Ad-CRISPR-TGF-β1 or Ad- CRISPR-Null. METHODS Haematoxylin and eosin staining, as well as Masson staining were performed to observe lung morphology. Albumin and IgM concentrations in bronchoalveolar lavage fluid were measured by ELISA. Cytokine levels were measured using ELISA and/or real-time PCR with terminal deoxynucleotidyl transferase mediated nick-end labelling. RESULTS Ad-CRISPR-TGFβ1 improved histopathological and biochemical markers of lung injury, reduced secretion and expression of inflammatory cytokines, and inhibited progression of fibrosis. Importantly, the SK1/S1P axis-which is known to play a key role via S1P1 in TGF-β1-dependent S1PR pattern remodelling-is responsible for promoting fibrosis. CONCLUSION Our results indicate novel insights for RILI therapy.
Collapse
Affiliation(s)
- Shuai Zhen
- Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi. China
| | - Rong Qiang
- Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi. China
| | - Jiaojiao Lu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061. China
| | - Xiaoqian Tuo
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061. China
| | - Xiling Yang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061. China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061. China
| |
Collapse
|
3
|
Maeda A, Murakami M, Iwasaki R, Goto S, Kitagawa K, Sakai H, Mori T. Three-dimensional conformal radiation therapy for canine aortic body tumour: 6 cases (2014-2019). J Small Anim Pract 2020; 62:385-390. [PMID: 33300156 DOI: 10.1111/jsap.13241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the feasibility of three-dimensional conformal radiation therapy for canine aortic body tumours. MATERIALS AND METHODS Medical records of dogs that had undergone three-dimensional conformal radiation therapy with presumptive diagnosis of aortic body tumour were reviewed for clinical characteristics, treatment modality and outcomes. RESULTS Eight dogs were diagnosed with aortic body tumour and were treated with three-dimensional conformal radiation therapy. One dog had proliferation of a mass in the right atrium during treatment and died of respiratory distress. Another dog did not undergo follow-up CT to evaluate the treatment response due to the increased blood urea nitrogen values. The remaining 6 dogs were included in the case series. Radiotherapy was performed using a median dose per fraction of 7 Gy (3.3-7.14 Gy), a median of seven divided doses (7-15) and a total median dose of 49 Gy (45-50 Gy). The median number of CT scans during the follow-up period was 5 (range: 3-8 times). CT revealed acute side effects in four dogs-grade 1 effects related to the lung (n = 4) and skin (n = 2). Self-limiting or asymptomatic late side effects (grade 1 lung-related effect) were observed in three dogs. After therapy, one dog demonstrated a complete response, another demonstrated a partial response and the disease remained stable in four animals. The median follow-up period was 514.5 (235-1219) days. After three-dimensional conformal radiation therapy, the aortic body tumour reduced gradually over time without regrowth in all these 6 dogs. CLINICAL SIGNIFICANCE In this small case series, aortic body tumours responded to three-dimensional conformal radiation therapy. Transient and self-limiting side effects of the treatments were common. Further controlled studies are required to prove the effectiveness and the safety of this intervention.
Collapse
Affiliation(s)
- A Maeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - M Murakami
- Laboratory of Veterinary Clinical Oncology, Department of Veterinary Medicine, Gifu University, Gifu5011193, Japan
| | - R Iwasaki
- Animal Medical Center, Gifu University, Gifu5011193, Japan
| | - S Goto
- Animal Medical Center, Gifu University, Gifu5011193, Japan
| | - K Kitagawa
- Department of Small Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, 48824, USA
| | - H Sakai
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Gifu University, Gifu, 5011193, Japan
| | - T Mori
- Laboratory of Veterinary Clinical Oncology, Department of Veterinary Medicine, Gifu University, Gifu5011193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
4
|
Kawabe M, Kitajima Y, Murakami M, Iwasaki R, Goto S, Sakai H, Mori T. Hypofractionated radiotherapy in nine dogs with unresectable solitary lung adenocarcinoma. Vet Radiol Ultrasound 2019; 60:456-464. [PMID: 31099095 DOI: 10.1111/vru.12754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/10/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022] Open
Abstract
Although lung lobectomy is the most common treatment option for dogs with solitary lung tumors, surgery often cannot be performed at the time of diagnosis. In this retrospective, case series study, we described the effects of hypofractionated radiotherapy for tumor mass reduction in nine dogs with solitary lung adenocarcinoma that were later considered for surgical resection, and we assessed the tolerability of the radiation protocol. Tumors were deemed unresectable by the attending veterinarian. The dose prescription was 7.0-12.0 Gy/fraction in four to seven fractions, administered weekly for a total dose of 40-50 Gy. Treatment planning prioritized normal tissue dose constraints. The median interval between the last radiotherapy session and maximum tumor size reduction was 56 (range: 26-196) days, with six and three dogs exhibiting a partial response and stable disease, respectively. Although acute and late radiation-induced toxicity to the skin and/or lungs developed in all nine dogs, it was self-limiting or improved with short-term anti-inflammatory treatment. Tumor progression after initial size reduction was confirmed in three dogs at 62, 126, and 175 days, respectively, after the last radiotherapy session. Seven of the nine dogs underwent lobectomy a median of 68 days after radiotherapy when tumors were in partial response or stable disease or at the time of progression, and five received systemic chemotherapy concurrent with or after radiotherapy. These findings suggest that hypofractionated radiotherapy for canine solitary lung adenocarcinoma is useful when the tumor is large or when surgery cannot be performed immediately after diagnosis.
Collapse
Affiliation(s)
- Mifumi Kawabe
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuka Kitajima
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mami Murakami
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Sho Goto
- Animal Medical Center, Gifu University, Gifu, Japan
| | - Hiroki Sakai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Mori
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Yin Z, Yang G, Deng S, Wang Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. JOURNAL OF RADIATION RESEARCH 2019; 60:204-214. [PMID: 30590649 PMCID: PMC6430248 DOI: 10.1093/jrr/rry105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to set up a beagle dog model, for radiation-induced lung injury, that would be able to supply fresh lung tissues in the different injury phases for research into oxidative stress levels and mitochondrial gene expression. Blood serum and tissues were collected via CT-guided core needle biopsies from dogs in the various phases of the radiation response over a 40-week period. Levels of reactive oxygen species (ROS) and manganese superoxide dismutase 2 (MnSOD) protein expression in radiation-induced lung injury were determined by in situ immunocytochemistry; malondialdehyde (MDA) content and reductase activity in the peripheral blood were also tested; in addition, the copy number of the mitochondrial DNA and the level of function of the respiratory chain in the lung tissues were assessed. ROS showed dynamic changes and peaked at 4 weeks; MnSOD was mainly expressed in the Type II alveolar epithelium at 8 weeks; the MDA content and reductase activity in the peripheral blood presented no changes; the copy numbers of most mitochondrial genes peaked at 8 weeks, similarly to the level of function of the corresponding respiratory chain complexes; the level of function of the respiratory chain complex III did not peak until 24 weeks, similarly to the level of function of the corresponding gene Cytb. Radiation-induced lung injury was found to be a dynamically changing process, mainly related to interactions between local ROS, and it was not associated with the levels of oxidative stress in the peripheral blood. Mitochondrial genes and their corresponding respiratory chain complexes were found to be involved in the overall process.
Collapse
Affiliation(s)
- Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Tel: +86-159-2739-5672; Fax: +86-27-6565-0733;
| |
Collapse
|
6
|
Reinero C. Interstitial lung diseases in dogs and cats part II: Known cause and other discrete forms. Vet J 2018; 243:55-64. [PMID: 30606440 DOI: 10.1016/j.tvjl.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
In addition to idiopathic interstitial pneumonias, interstitial lung diseases (ILDs) can occur secondary to known causes or be classified as discrete syndromes. Also known as diffuse parenchymal lung diseases, the ILDs represent a heterogenous group of non-infectious, non-neoplastic disorders characterized by varied patterns of inflammation and fibrosis. Characteristically associated with the true interstitium (i.e. the anatomic space lined by alveolar epithelial cells and capillary endothelial cells and the loose-binding connective tissue), it is important to understand ILDs are associated with pathology of the distal lung parenchyma and thus lesions can be bronchiolocentric or resemble alveolar filling disorders. Injury to the distal lung can occur via inhalation or hematogenous routes. This review will build on a proposed classification scheme adapted from human medicine to describe known cause and discrete forms of ILDs in dogs and cats.
Collapse
Affiliation(s)
- Carol Reinero
- Department of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Hao Y, Ran Y, Lu B, Li J, Zhang J, Feng C, Fang J, Ma R, Qiao Z, Dai X, Xiong W, Liu J, Zhou Q, Hao J, Li R, Dai J. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Canine Radiation-Induced Lung Injury. Int J Radiat Oncol Biol Phys 2018; 102:407-416. [PMID: 30191872 DOI: 10.1016/j.ijrobp.2018.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the effect of human umbilical cord-derived mesenchymal stem cell (MSC) transplantation on canine radiation-induced lung injury. METHODS AND MATERIALS Beagle dogs received localized 15-Gy x-ray radiation to the right lower lung to establish the model of radiation-induced lung injury. After 180 days, dogs were divided into 2 groups (4 per group). The MSC group received intratracheal MSC transplantation, and the saline group received the same volume of normal saline by lavage. The effect of MSC transplantation on lung injury was then evaluated 180 days after transplantation. RESULTS At 180 days after 15-Gy radiation, canine arterial blood oxygen partial pressure was significantly decreased, and the levels of hydroxyproline and transforming growth factor (TGF)-β in peripheral blood were significantly increased, whereas that of TGF-α was significantly decreased. Computed tomography evaluation revealed visible honeycomb shadows in the right middle and lower pulmonary pleurae. Blood oxygen partial pressure of the MSC group gradually increased over time, whereas the levels of hydroxyproline and TGF-β in the peripheral blood showed a decreasing trend; TGF-α levels gradually increased, which differed significantly from the results observed in the saline group. In addition, computed tomography and pathologic examination showed that the degree of lung injury in the MSC group was milder. The MSC group also showed significantly increased pulmonary superoxide dismutase levels and significantly decreased tumor necrosis factor-α, Interleukein-1, and hyaluronic acid levels. Further study confirmed that MSC transplantation inhibited the activation of TGF-β-Smad2/3 in lung tissues, and in vitro experiments showed that medium conditioned with MSCs effectively inhibited the increase in Smad2 and 3 levels induced by TGF-β1. CONCLUSION Canine radiation-induced lung injury could be observed at 180 days after radiation at 15 Gy. MSC transplantation can reduce oxidative stress, inflammatory reactions, and TGF-β-Smad2/3 pathway activation, thereby reducing lung injury.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunjing Feng
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jinhui Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruoyu Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Qiao
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qi Zhou
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Donington JS. Salvage Resections for Stage III Non-small Cell Lung Cancer: A Curious Area of Investigation. Semin Thorac Cardiovasc Surg 2017; 29:242-243. [PMID: 28823337 DOI: 10.1053/j.semtcvs.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 11/11/2022]
|