1
|
Tichy A, Carpenter AD, Li Y, Rydlova G, Rehulka P, Markova M, Milanova M, Chmil V, Cheema AK, Singh VK. Radiation Signature in Plasma Metabolome of Total-Body Irradiated Nonhuman Primates and Clinical Patients. Int J Mol Sci 2024; 25:9208. [PMID: 39273157 PMCID: PMC11395250 DOI: 10.3390/ijms25179208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
Collapse
Affiliation(s)
- Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gabriela Rydlova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Biology and Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marketa Markova
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, 128 00 Prague, Czech Republic
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Vojtech Chmil
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 2057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Duyssembayev S, Serikova A, Ikimbayeva N, Balgabaikyzy A, Zhexenayeva A. The quality of beef in the conditions of the former Semipalatinsk Test Site. J Anim Physiol Anim Nutr (Berl) 2023; 107:1328-1335. [PMID: 37036054 DOI: 10.1111/jpn.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 04/11/2023]
Abstract
The territory of the Semipalatinsk Nuclear Test Site represents vast areas of grassy steppes, their use as pastures seems promising. The purpose of work was to compare beef samples obtained from settlements belonging to different categories of radiation risk: Kokpekty village, Chagan urban-type settlement, Krivinka village, Sarzhal village, three samples were examined from each settlement. Organoleptic analysis, radiometric determination of 137 Cs, was used as criteria. Also, an analysis of the amino acid composition by the high-performance liquid chromatograph method was carried out and a calculation of protein indicators was made: meat tenderness, amino acid usefulness, nutrition value. The organoleptic examination showed the compliance of all samples with the standards, with the exception of one sample from the Sarzhal village. The study of the specific activity of 137 Cs showed a direct correlation between the category of radiation risk and the content of this radioisotope in meat from different zones. The availability of some deviations in the samples indicators obtained from the Sarzhal village indicates the need to approach the products control from this zone more carefully, and radioisotope analysis should become a decisive criterion in determining the safety profile of the product.
Collapse
Affiliation(s)
- Sergazy Duyssembayev
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Ainur Serikova
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Nurgul Ikimbayeva
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Assem Balgabaikyzy
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Assel Zhexenayeva
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| |
Collapse
|
3
|
Li A, Li Y, Mei Y, Zhao J, Zhou Q, Li K, Zhao M, Xu J, Ge X, Xu Q. Associations of metals and metals mixture with lipid profiles: A repeated-measures study of older adults in Beijing. CHEMOSPHERE 2023; 319:137833. [PMID: 36693480 DOI: 10.1016/j.chemosphere.2023.137833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metals inevitably and easily enter into human bodies and can induce a series of pathophysiological changes, such as oxidative stress damage and lipid peroxidation, which then may further induce dyslipidemia. However, the effects of metals and metals mixture on the lipid profiles are still unclear, especially in older adults. A three-visits repeated measurement of 201 older adults in Beijing was conducted from November 2016 to January 2018. Linear Mixed Effects models and Bayesian kernel machine regression models were used to estimate associations of eight blood metals and metals mixture with lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Castelli risk indexes I (CRI-1), Castelli risk indexes II (CRI-2), atherogenic coefficient (AC), and non-HDL cholesterol (NHC). Cesium (Cs) was positively associated with TG (βCs = 0.14; 95% CI: 0.02, 0.26) whereas copper (Cu) was inversely related to TG (βCu = -0.65; 95%CI: -1.14, -0.17) in adjusted models. Manganese (Mn) was mainly related to higher HDL-C (βMn = 0.14; 95% CI: 0.07, 0.21) whereas molybdenum showed opposite association. Metals mixture was marginally positive associated with HDL-C, among which Mn played a crucial role. Our findings suggest that the effects of single metal on lipid profiles may be counteracted in mixtures in the context of multiple metal exposures; however, future studies with large sample size are still needed to focus on the detrimental effects of single metals on lipid profiles as well as to identify key components.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
4
|
Kojima Y, Yokoya S, Kurita N, Idaka T, Ishikawa T, Tanaka H, Ezawa Y, Ohto H. Cryptorchidism after the Fukushima Daiichi Nuclear Power Plant accident:causation or coincidence? Fukushima J Med Sci 2019; 65:76-98. [PMID: 31915325 PMCID: PMC7012587 DOI: 10.5387/fms.2019-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023] Open
Abstract
Cryptorchidism (undescended testes) is among the most common congenital diseases in male children. Although many factors have been linked to the incidence of cryptorchidism, and testicular androgen plays a key role in its pathogenesis, the cause remains unknown in most cases. Recently, a Japanese group published a speculative paper entitled, "Nationwide increase in cryptorchidism after the Fukushima nuclear accident." Although the authors implicated radionuclides emitted from the Fukushima accident as contributing to an increased incidence of cryptorchidism, they failed to establish biological plausibility for their hypothesis, and glossed over an abundance of evidence and expert opinion to the contrary. We assessed the adequacy of their study in terms of design setting, data analysis, and its conclusion from various perspectives. Numerous factors must be considered, including genetic, environmental, maternal/fetal, and social factors associated with the reporting of cryptorchidism. Other investigators have established that the doses of external and internal radiation exposure in both Fukushima prefecture and the whole of Japan after the accident are too low to affect testicular descent during fetal periods;thus, a putative association can be theoretically and empirically rejected. Alternative explanations exist for the reported estimates of increased cryptorchidism surgeries in the years following Japan's 2011 earthquake, tsunami, and nuclear crisis. Data from independent sources cast doubt on the extent to which cryptorchidism increased, if at all. In any case, evidence that radionuclides from the Fukushima Daiichi Nuclear Power Plant could cause cryptorchidism is lacking.
Collapse
Affiliation(s)
- Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine
| | - Susumu Yokoya
- Thyroid and Endocrine Center, Fukushima Medical University School of Medicine
| | - Noriaki Kurita
- Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University
- Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University
| | - Takayuki Idaka
- Medical Research Center, Fukushima Medical University School of Medicine
| | - Tetsuo Ishikawa
- Department of Radiation Physics and Chemistry, Fukushima Medical University
| | - Hideaki Tanaka
- Department of Pediatric Surgery, Fukushima Medical University Hospital
| | - Yoshiko Ezawa
- Medical Affairs Division, Fukushima Medical University Hospital
| | - Hitoshi Ohto
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| |
Collapse
|
5
|
Lebsir D, Manens L, Grison S, Lestaevel P, Ebrahimian T, Suhard D, Phan G, Dublineau I, Tack K, Benderitter M, Pech A, Jourdain JR, Souidi M. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat. Mol Cell Endocrinol 2018; 474:119-126. [PMID: 29496566 DOI: 10.1016/j.mce.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. METHODS Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. RESULTS hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). CONCLUSION we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones.
Collapse
Affiliation(s)
- Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Line Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Stephane Grison
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Teni Ebrahimian
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Isabelle Dublineau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Annick Pech
- Pharmacie centrale des armées, Direction des Approvisionnement en produits de Santé des Armées, 45000 Orléans, France
| | - Jean-Rene Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France.
| |
Collapse
|
6
|
Bellés M, Gonzalo S, Serra N, Esplugas R, Arenas M, Domingo JL, Linares V. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice. ENVIRONMENTAL RESEARCH 2017; 156:291-296. [PMID: 28371757 DOI: 10.1016/j.envres.2017.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium (137Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation (137Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137Cs). Further investigations are required to clarify the mechanisms involved in the internal IR-induced nephrotoxicity.
Collapse
Affiliation(s)
- Montserrat Bellés
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Sergio Gonzalo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Noemí Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Meritxell Arenas
- Radiation Oncology Department, Sant Joan University Hospital, IISPV, Rovira i Virgili University, Reus, Spain
| | - José Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Victoria Linares
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain.
| |
Collapse
|
7
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|