1
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
3
|
Magnetic nanowires substrate increases adipose-derived mesenchymal cells osteogenesis. Sci Rep 2022; 12:16698. [PMID: 36202902 PMCID: PMC9537172 DOI: 10.1038/s41598-022-21145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic nanomaterials are increasingly impacting the field of biology and medicine. Their versatility in terms of shape, structure, composition, coating, and magnetic responsivity make them attractive for drug delivery, cell targeting and imaging. Adipose derived-mesenchymal cells (ASCs) are intensely scrutinized for tissue engineering and regenerative medicine. However, differentiation into musculoskeletal lineages can be challenging. In this paper, we show that uncoated nickel nanowires (Ni NW) partially released from their alumina membrane offer a mechanically-responsive substrate with regular topography that can be used for the delivery of magneto-mechanical stimulation. We have used a tailored protocol for improving ASCs adherence to the substrate, and showed that cells retain their characteristic fibroblastic appearance, cytoskeletal fiber distribution and good viability. We report here for the first time significant increase in osteogenic but not adipogenic differentiation of ASCs on Ni NW exposed to 4 mT magnetic field compared to non-exposed. Moreover, magnetic actuation is shown to induce ASCs osteogenesis but not adipogenesis in the absence of external biochemical cues. While these findings need to be verified in vivo, the use of Ni NW substrate for inducing osteogenesis in the absence of specific differentiation factors is attractive for bone engineering. Implant coating with similar surfaces for orthopedic and dentistry could be as well envisaged as a modality to improve osteointegration.
Collapse
|
4
|
Minin A, Blatov I, Lebedeva V, Tuchai M, Pozdina V, Byzov I, Zubarev I. Novel cost-efficient protein-membrane basedsystem for cells co-cultivation and modeling theintercellular communication. Biotechnol Bioeng 2022; 119:1033-1042. [PMID: 35000190 DOI: 10.1002/bit.28031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/11/2022]
Abstract
In vitro systems serve as compact and manipulate models to investigate interactions between different cell types. A homogeneous population of cells predictably and uniformly responds to external factors. In a heterogeneous cell population, the effect of external growth factors is perceived in the context of intercellular interactions. Indirect cell cocultivation allows one to observe the paracrine effects of cells and separately analyze cell populations. The article describes an application of custom-made cell co-cultivation systems based on protein membranes separated from the bottom of the vessel by the 3d printed holder or kept afloat by a magnetic field. Using the proposed co-cultivation system, we analyzed the interaction of A549 cells and fibroblasts, in the presence and absence of growth factors. During co-cultivation of cells, the expression of genes of the activation for epithelial and mesenchymal transitions decreases. The article proposes the application of a newly available system for the co-cultivation of different cell types. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- A Minin
- M. N. Mikheev Institute of Metal Physics, Yekaterinburg, Russian Federation.,Ural Federal University, Yekaterinburg, Russian Federation
| | - I Blatov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - V Lebedeva
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - M Tuchai
- Ural Research Center for Radiation Medicine, Chelyabinsk, Russian Federation
| | - V Pozdina
- Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - I Byzov
- M. N. Mikheev Institute of Metal Physics, Yekaterinburg, Russian Federation
| | - I Zubarev
- Ural Federal University, Yekaterinburg, Russian Federation.,Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
5
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
6
|
Enríquez Á, Libring S, Field TC, Jimenez J, Lee T, Park H, Satoski D, Wendt MK, Calve S, Tepole AB, Solorio L, Lee H. High-Throughput Magnetic Actuation Platform for Evaluating the Effect of Mechanical Force on 3D Tumor Microenvironment. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2005021. [PMID: 34764824 PMCID: PMC8577425 DOI: 10.1002/adfm.202005021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 05/03/2023]
Abstract
Accurately replicating and analyzing cellular responses to mechanical cues is vital for exploring metastatic disease progression. However, many of the existing in vitro platforms for applying mechanical stimulation seed cells on synthetic substrates. To better recapitulate physiological conditions, a novel actuating platform is developed with the ability to apply tensile strain on cells at various amplitudes and frequencies in a high-throughput multi-well culture plate using a physiologically-relevant substrate. Suspending fibrillar fibronectin across the body of the magnetic actuator provides a matrix representative of early metastasis for 3D cell culture that is not reliant on a synthetic substrate. This platform enables the culturing and analysis of various cell types in an environment that mimics the dynamic stretching of lung tissue during normal respiration. Metabolic activity, YAP activation, and morphology of breast cancer cells are analyzed within one week of cyclic stretching or static culture. Further, matrix degradation is significantly reduced in breast cancer cell lines with metastatic potential after actuation. These new findings demonstrate a clear suppressive cellular response due to cyclic stretching that has implications for a mechanical role in the dormancy and reactivation of disseminated breast cancer cells to macrometastases.
Collapse
Affiliation(s)
- Ángel Enríquez
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Libring
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler C. Field
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Julian Jimenez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Taeksang Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas Satoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael K. Wendt
- Purdue Center for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Luis Solorio
- Purdue Center for Cancer Research, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Su L, Zhu L, Liu Z, Lou J, Han B, Lin C, Li D, Qian J, Zhao X, Chen G. The decreased permittivity of zebrafish embryos culture medium by magnetic fields did not affect early development of zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110350. [PMID: 32114242 DOI: 10.1016/j.ecoenv.2020.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have shown associations between exposure to environmental extremely low frequency magnetic fields (ELF-MF) and health effects, but the mechanisms of ELF-MF induced biological effects remain unclear. We hypothesized that ELF-MF may regulate functions of tissues or cells via its effects on surrounding environment, e.g., culture medium. To test this hypothesis, we investigated the effects of 50 Hz MF on the relative permittivity of zebrafish embryos culture medium as well as of MF-exposed medium on zebrafish embryos development. The responses of medium to 50 Hz MF exposure were evaluated by a phase-sensitive surface plasmon resonance (SPR) system. The results demonstrated that MF treatment decreased relative permittivity of zebrafish embryos medium in a dose and time-dependent way. Interestingly, the decreased permittivity induced by MF exposure gradually recovered and approached to the base level when the exposure was removed off. However, MF-exposed medium did not trigger adverse consequences of embryos during zebrafish embryonic development, including mortality, malformation, hatching and heart rate when the MF pre-exposed medium was subjected to one cell-stage embryos. Moreover, the MF-exposed medium did not induce apoptosis of zebrafish embryos at 48 and 72 h post fertilization. Our data demonstrated that the relative permittivity of zebrafish embryos medium was decreased by MF exposure, whereas this decrease failed to result in abnormal development of zebrafish embryos.
Collapse
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Longtao Zhu
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenchao Liu
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Jianyao Lou
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bing Han
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chen Lin
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Xinyuan Zhao
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001, China.
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Fei Y, Jin Y, Zhao X, Wang Y, Qian J, Su L, Chen G. The Relative Permittivity Changes of EGF by 50 Hz MF Exposure Neither Affect the Interaction of EGF With EGFR Nor Its Biological Effects. Bioelectromagnetics 2020; 41:241-246. [PMID: 31951053 DOI: 10.1002/bem.22249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/04/2020] [Indexed: 11/10/2022]
Abstract
The biophysical mechanism of magnetic fields (MFs) acting on living systems is not clear. Previous research showed that, similar to epidermal growth factor (EGF), MF exposure induced EGF receptor (EGFR) clustering and activated EGFR signaling. In this study, we investigated whether MF exposure induced the changes in physical characteristics of EGF and downstream effects of EGF and EGFR interaction. The phase-interrogation surface plasmon resonance (SPR) sensing analyses showed that 50 Hz MF exposure at 4.0 mT for 1 h induced reversible relative permittivity changes of EGF solution. However, compared with sham-exposed EGF solution, the MF-exposed EGF solution did not affect the binding of EGF to EGFR, nor the cell viability and EGFR clustering in human amniotic epithelial cells (FL cells). Our data suggest that cellular EGFR clustering response to MF exposure might not be a result of changes in relative permittivity of EGF in cell culture solution. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Yue Fei
- Bioelectromagnetics Laboratory, Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yumin Jin
- Bioelectromagnetics Laboratory, Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyuan Zhao
- Bioelectromagnetics Laboratory, Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Yiqin Wang
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, China
| | - Liling Su
- Bioelectromagnetics Laboratory, Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|