1
|
Li Y, Huang J, Song F, Guo Z, Deng W. Physiological and Transcriptomic Dynamics in Mulberry: Insights into Species-Specific Responses to Midday Depression. Genes (Basel) 2024; 15:1571. [PMID: 39766838 PMCID: PMC11675086 DOI: 10.3390/genes15121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objective: The midday depression of photosynthesis, a physiological phenomenon driven by environmental stress, impacts plant productivity. This study aims to elucidate the molecular and physiological responses underlying midday depression in two mulberry species, Ewu No. 1 (Ew1) and Husan No. 32 (H32), to better understand their species-specific stress adaptation mechanisms. Methods: RNA-seq analysis was conducted on leaf samples collected at three time points (10:00 a.m., 12:00 p.m., and 4:00 p.m.), identifying 22,630 differentially expressed genes (DEGs). A comparative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to reveal the involvement of key metabolic and signaling pathways in stress responses. Results: Ew1 displayed enhanced stress tolerance by upregulating genes involved in energy management, water conservation, and photosynthetic processes, maintaining higher photosynthetic rates under midday stress. In contrast, H32 adopted a more conservative response, downregulating genes related to photosynthesis and metabolism, favoring survival at the expense of productivity. The KEGG analysis highlighted starch and sucrose metabolism and plant hormone signaling as critical pathways contributing to these species-specific responses. Conclusions: Ew1's adaptive molecular strategies make it more suitable for environments with variable light and temperature conditions, while H32's conservative approach may limit its productivity. These findings provide valuable insights for breeding programs aimed at improving stress tolerance and photosynthetic efficiency in mulberry and other crops, particularly under fluctuating environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.L.); (J.H.); (F.S.); (Z.G.)
| |
Collapse
|
2
|
Stetkiewicz S, Menary J, Nair A, Rufino M, Fischer ARH, Cornelissen M, Guichaoua A, Jorasch P, Lemarié S, Nanda AK, Wilhelm R, Davies JAC. Food system actor perspectives on future-proofing European food systems through plant breeding. Sci Rep 2023; 13:5444. [PMID: 37012265 PMCID: PMC10069723 DOI: 10.1038/s41598-023-32207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Crop improvement is a key innovation area in the pursuit of sustainable food systems. However, realising its potential requires integration of the needs and priorities of all agri-food chain stakeholders. In this study, we provide a multi-stakeholder perspective on the role of crop improvement in future-proofing the European food system. We engaged agri-business, farm- and consumer-level stakeholders, and plant scientists through an online survey and focus groups. Four of each group's top five priorities were shared and related to environmental sustainability goals (water, nitrogen and phosphorus efficiency, and heat stress). Consensus was identified on issues including considering existing alternatives to plant breeding (e.g. management strategies), minimising trade-offs, and addressing geographical variation in needs. We conducted a rapid evidence synthesis on the impacts of priority crop improvement options, highlighting the urgent need for further research examining downstream sustainability impacts to identify concrete targets for plant breeding innovation as a food systems solution.
Collapse
Affiliation(s)
- S Stetkiewicz
- Lancaster University, Lancaster, LA1 4YX, Lancashire, UK.
| | - J Menary
- Lancaster University, Lancaster, LA1 4YX, Lancashire, UK
| | - A Nair
- Marketing and Consumer Behaviour Group, Wageningen University, 6700 EW, Wageningen, The Netherlands
| | - M Rufino
- Lancaster University, Lancaster, LA1 4YX, Lancashire, UK
| | - A R H Fischer
- Marketing and Consumer Behaviour Group, Wageningen University, 6700 EW, Wageningen, The Netherlands
| | | | - A Guichaoua
- ACTA -The Agricultural Technical Institutes, 75595, Paris, France
| | | | - S Lemarié
- Université Grenoble Alpes, CNRS, INRA, Grenoble INP, 38400, Saint-Martin-d'Hères, France
| | - A K Nanda
- 'Plants for the Future' European Technology Platform, 1000, Brussels, Belgium
| | - R Wilhelm
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, 06484, Quedlinburg, Germany
| | - J A C Davies
- Lancaster University, Lancaster, LA1 4YX, Lancashire, UK
| |
Collapse
|
3
|
Qin Y, Xie XQ, Khan Q, Wei JL, Sun AN, Su YM, Guo DJ, Li YR, Xing YX. Endophytic nitrogen-fixing bacteria DX120E inoculation altered the carbon and nitrogen metabolism in sugarcane. Front Microbiol 2022; 13:1000033. [PMID: 36419423 PMCID: PMC9678049 DOI: 10.3389/fmicb.2022.1000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2024] Open
Abstract
Endophytic nitrogen-fixing bacteria are versatile and widely distributed in plants. Numerous strains of endophytic nitrogen-fixing bacteria are used as biofertilizers to minimize the utilization of chemical fertilizers, improve nutrient use efficiency, increase crop productivity, and reduce environmental pollution. However, the mechanism underlying the interaction between nitrogen-fixing bacteria and plants is still unclear. So, the present study was planned to assess the effects of endophytic nitrogen-fixing bacteria on sugarcane by analyzing the changes in physiological and biochemical activities. In the current study, Klebsiella variicola DX120E, an endophytic nitrogen-fixing bacterium, was inoculated on sugarcane varieties B8 and ROC22 to evaluate the effects on nitrogen and carbon metabolism-related enzymatic activity and biomass. Results showed that DX120E inoculation improved the enzymatic activities related to gluconeogenesis and nitrogen metabolism increased the sugarcane plant's height, cane juice Brix, biomass, chlorophyll, and soluble sugar content in sugarcane. Metabolomics analysis revealed that the metabolome modules were highly enriched in carbon and nitrogen metabolic pathways of strain-affected sugarcane than uninoculated control. The identified carbohydrates were associated with the glycolysis or gluconeogenesis and tricarboxylic acid (TCA) cycle in plants. Metabolomic profiling in the present investigation showed that carbohydrate metabolism is coordinated with nitrogen metabolism to provide carbon skeletons and energy to amino acid synthesis, and amino acid degradation results in several metabolites used by the citric acid cycle as an energy source. Moreover, differentially expressed metabolites of non-proteinogenic amino acids have a further complementary role to the action of endophytic nitrogen-fixing bacteria. Meanwhile, a significant difference in metabolites and metabolic pathways present in stems and leaves of B8 and ROC22 varieties was found. This study discovered the potential benefits of DX120E in sugarcane and suggested candidate regulatory elements to enhance interactions between nitrogen-fixing microbes and sugarcane.
Collapse
Affiliation(s)
- Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Xian-Qiu Xie
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiang-Lu Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - An-Ni Sun
- College of Agriculture, Guangxi University, Nanning, China
| | - Yi-Mei Su
- College of Agriculture, Guangxi University, Nanning, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
5
|
Suryanarayanan TS, Ayesha MS, Shaanker RU. Leaf photosynthesis: do endophytes have a say? TRENDS IN PLANT SCIENCE 2022; 27:968-970. [PMID: 35961917 DOI: 10.1016/j.tplants.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Endophytes, both bacterial and fungal, constitute an integral component of the leaf ecosystem. Here we argue that the respiratory metabolism of endophytes in the intercellular spaces of leaves could have a significant role in enhancing leaf photosynthesis by enriching the internal CO2 concentration, especially in C3 plants.
Collapse
Affiliation(s)
- T S Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), RKM Vidyapith, Chennai 600 006, India.
| | - M S Ayesha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - R Uma Shaanker
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jammu 181 221, India
| |
Collapse
|
6
|
Verma V, Vishal B, Kohli A, Kumar PP. Systems-based rice improvement approaches for sustainable food and nutritional security. PLANT CELL REPORTS 2021; 40:2021-2036. [PMID: 34591154 DOI: 10.1007/s00299-021-02790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value. With hunger and malnutrition rampant among the poor, rice research for development is unique in global food and nutrition security. A systems-based, sustainable increase in rice quantity and quality is imperative for environmental and biodiversity benefits. Upstream 'discovery' through biotechnology, midstream 'development' through breeding and agronomy, downstream 'dissemination and deployment' must be 'demand-driven' for 'distinct socio-economic transformational impacts'. Local agro-ecology and livelihood nexus must drive the research agenda for targeted benefits. This necessitates sustained long-term investments by government, non-government and private sectors to secure the future food, nutrition, environment, prosperity and equity status.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Ajay Kohli
- Strategic Innovation Platform, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
7
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Chen J. Multidimensional analysis model of agricultural product supply chain competition based on mean fuzzy. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-210962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Efficient and reliable fresh agricultural products supply chain is the key to meet the demand of consumers for fresh agricultural products, and also the guarantee for suppliers to realize their economic benefits. Therefore, a multi-dimensional analysis model of agricultural products supply chain competition based on fuzzy mean value is proposed. Firstly, the information distribution model of multi-dimensional analysis of agricultural product supply chain competition is proposed. On this basis, the multi-dimensional analysis information scheduling fusion of agricultural product supply chain competition is processed. Then, the application of mean value fuzzy in agricultural product supply chain is analyzed. According to the identification module of agricultural product information code, the fuzzy comprehensive evaluation model of supply chain and the mean fuzzy analytic hierarchy process, the competition of agricultural product supply chain is established Dimension analysis model. The experimental results show that the performance score of agricultural product supply chain is higher, the accuracy of supply chain information diagnosis is higher, and the clustering of agricultural product supply chain information diagnosis is better.
Collapse
Affiliation(s)
- Jing Chen
- School of Economics and Management, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
9
|
Araus JL, Sanchez-Bragado R, Vicente R. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3936-3955. [PMID: 33640973 DOI: 10.1093/jxb/erab097] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Increasing the speed of breeding to enhance crop productivity and adaptation to abiotic stresses is urgently needed. The perception that a second Green Revolution should be implemented is widely established within the scientific community and among stakeholders. In recent decades, different alternatives have been proposed for increasing crop yield through manipulation of leaf photosynthetic efficiency. However, none of these has delivered practical or relevant outputs. Indeed, the actual increases in photosynthetic rates are not expected to translate into yield increases beyond 10-15%. Furthermore, instantaneous rates of leaf photosynthesis are not necessarily the reference target for research. Yield is the result of canopy photosynthesis, understood as the contribution of laminar and non-laminar organs over time, within which concepts such as canopy architecture, stay-green, or non-laminar photosynthesis need to be taken into account. Moreover, retrospective studies show that photosynthetic improvements have been more common at the canopy level. Nevertheless, it is crucial to place canopy photosynthesis in the context of whole-plant functioning, which includes sink-source balance and transport of photoassimilates, and the availability and uptake of nutrients, such as nitrogen in particular. Overcoming this challenge will only be feasible if a multiscale crop focus combined with a multidisciplinary scientific approach is adopted.
Collapse
Affiliation(s)
- José L Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - Ruth Sanchez-Bragado
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, and AGROTECNIO Center, Lleida, Spain
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, Beenaerts N, Méndez-Santos IE, Orberá Ratón T, Cos P, Cuypers A. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants (Basel) 2020; 9:E1048. [PMID: 33121046 PMCID: PMC7693031 DOI: 10.3390/antiox9111048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies. These natural antioxidants can be valorized via plant-derived foods and products. Cuba contains an enormously rich plant biodiversity harboring a great antioxidant potential. Besides opening new avenues for the implementation of sustainable agroecological practices in crop production, it will also contribute to new strategies to preserve plant biodiversity and simultaneously improve nature management policies in Cuba. This review provides an overview on the beneficial properties of antioxidants for plant protection and human health and is directed to the valorization of these plant antioxidants, emphasizing the need for biodiversity conservation.
Collapse
Affiliation(s)
- Gabriel Llauradó Maury
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Daniel Méndez Rodríguez
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Julio César Escalona Arranz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Yilan Fung Boix
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Ania Ochoa Pacheco
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Jesús García Díaz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Humberto J. Morris-Quevedo
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Albys Ferrer Dubois
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Elizabeth Isaac Aleman
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Isidro E. Méndez-Santos
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
| | - Teresa Orberá Ratón
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| |
Collapse
|
11
|
Evans JR, Lawson T. From green to gold: agricultural revolution for food security. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2211-2215. [PMID: 32251509 DOI: 10.1093/jxb/eraa110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|