1
|
Bharath P, Gahir S, Raghavendra AS. Cytosolic alkalinization in guard cells: an intriguing but interesting event during stomatal closure that merits further validation of its importance. FRONTIERS IN PLANT SCIENCE 2024; 15:1491428. [PMID: 39559765 PMCID: PMC11570284 DOI: 10.3389/fpls.2024.1491428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Stomatal closure is essential to conserve water and prevent microbial entry into leaves. Alkalinization of guard cells is common during closure by factors such as abscisic acid, methyl jasmonate, and even darkness. Despite reports pointing at the role of cytosolic pH, there have been doubts about whether the guard cell pH change is a cause for stomatal closure or an associated event, as changes in membrane potential or ion flux can modulate the pH. However, the importance of cytosolic alkalinization is strongly supported by the ability of externally added weak acids to restrict stomatal closure. Using genetically encoded pH sensors has confirmed the rise in pH to precede the elevation of Ca2+ levels. Yet some reports claim that the rise in pH follows the increase in ROS or Ca2+. We propose a feedback interaction among the rise in pH or ROS or Ca2+ to explain the contrasting opinions on the positioning of pH rise. Stomatal closure and guard cell pH changes are compromised in mutants deficient in vacuolar H+-ATPase (V-ATPase), indicating the importance of V-ATPase in promoting stomatal closure. Thus, cytosolic pH change in guard cells can be related to the rise in ROS and Ca2+, leading to stomatal closure. We emphasize that cytosolic pH in stomatal guard cells deserves further attention and evaluation.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Jahan I, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Negative regulation of chitosan-induced stomatal closure by glutathione in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:918-922. [PMID: 38777629 DOI: 10.1093/bbb/zbae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Chitosan (CHT) is a deacylated derivative of chitin and improves growth and yield performance, activates defensive genes, and also induces stomatal closure in plants. Glutathione (GSH) has significant functions in the growth, development, defense systems, signaling, and gene expression. GSH negatively regulates abscisic acid-, methyl jasmonate-, and salicylic acid-induced stomatal closure. However, the negative regulation by GSH of CHT-induced stomatal closure is still unknown. Regulation of CHT-induced stomatal closure by GSH in guard cells was investigated using two GSH-deficient mutants, cad2-1 and chlorina 1-1 (ch1-1), and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). The cad2-1 and ch1-1 mutations and CDNB treatment enhanced CHT-induced stomatal closure. Treatment with glutathione monoethyl ester restored the GSH level in the guard cells of cad2-1 and ch1-1 and complemented the stomatal phenotype of the mutants. These results indicate that GSH negatively regulates CHT-induced stomatal closure in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Israt Jahan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Lai KC, Chueh FS, Ma YS, Chou YC, Chen JC, Liao CL, Huang YP, Peng SF. Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:457-469. [PMID: 37792803 DOI: 10.1002/tox.23993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Irinotecan (IRI), an anticancer drug to treat colon cancer patients, causes cytotoxic effects on normal cells. Phenethyl isothiocyanate (PEITC), rich in common cruciferous plants, has anticancer activities (induction of cell apoptosis) in many human cancer cells, including colon cancer cells. However, the anticancer effects of IRI combined with PEITC on human colon cancer cells in vitro were unavailable. Herein, the aim of this study is to focus on the apoptotic effects of the combination of IRI and PEITC on human colon cancer HCT 116 cells in vitro. Propidium iodide (PI) exclusion and Annexin V/PI staining assays showed that IRI combined with PEITC decreased viable cell number and induced higher cell apoptosis than that of IRI or PEITC only in HCT 116 cells. Moreover, combined treatment induced higher levels of reactive oxygen species (ROS) and Ca2+ than that of IRI or PEITC only. Cells pre-treated with N-acetyl-l-cysteine (scavenger of ROS) and then treated with IRI, PEITC, or IRI combined with PEITC showed increased viable cell numbers than that of IRI or PEITC only. IRI combined with PEITC increased higher caspase-3, -8, and -9 activities than that of IRI or PEITC only by flow cytometer assay. IRI combined with PEITC induced higher levels of ER stress-, mitochondria-, and caspase-associated proteins than that of IRI or PEITC treatment only in HCT 116 cells. Based on these observations, PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Ching-Lung Liao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Aihara Y, Maeda B, Goto K, Takahashi K, Nomoto M, Toh S, Ye W, Toda Y, Uchida M, Asai E, Tada Y, Itami K, Sato A, Murakami K, Kinoshita T. Identification and improvement of isothiocyanate-based inhibitors on stomatal opening to act as drought tolerance-conferring agrochemicals. Nat Commun 2023; 14:2665. [PMID: 37188667 DOI: 10.1038/s41467-023-38102-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.
Collapse
Affiliation(s)
- Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Kanna Goto
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Nomoto
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Shigeo Toh
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Environmental Bioscience, Meijo University, Nagoya, Japan
| | - Wenxiu Ye
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Yosuke Toda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Phytometrics Co., Ltd., Hamamatsu, Shizuoka, 435-0036, Japan
| | - Mami Uchida
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Eri Asai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan.
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
5
|
Arruebarrena Di Palma A, Perk EA, Carboni ME, García‐Mata C, Budak H, Tör M, Laxalt AM. The isothiocyanate sulforaphane induces respiratory burst oxidase homologue D-dependent reactive oxygen species production and regulates expression of stress response genes. PLANT DIRECT 2022; 6:e437. [PMID: 36091879 PMCID: PMC9448665 DOI: 10.1002/pld3.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Sulforaphane (SFN) is an isothiocyanate-type phytomolecule present in crucifers, which is mainly synthesized in response to biotic stress. In animals, SFN incorporated in the diet has anticancer properties among others. The mechanism of action and signaling are well described in animals; however, little is known in plants. The goal in the present study is to elucidate components of the SFN signaling pathway, particularly the production of reactive oxygen species (ROS), and its effect on the transcriptome. Our results showed that in Arabidopsis, SFN causes ROS production exclusively through the action of the NADPH oxidase RBOH isoform D that requires calcium as a signaling component for the ROS production. To add to this, we also analyzed the effect of SFN on the transcriptome by RNAseq. We observed the highest expression increase for heat shock proteins (HSP) genes and also for genes associated with the response to oxidative stress. The upregulation of several genes linked to the biotic stress response confirms the interplay between SFN and this stress. In addition, SFN increases the levels of transcripts related to the response to abiotic stress, as well as phytohormones. Taken together, these results indicate that SFN induces an oxidative burst leading to signaling events. This oxidative burst may cause the increase of the expression of genes such as heat shock proteins to restore cellular homeostasis and genes that codify possible components of the signaling pathway and putative effectors.
Collapse
Affiliation(s)
| | - Enzo A. Perk
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | - Martín E. Carboni
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICETBuenos AiresArgentina
| | - Carlos García‐Mata
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | | | - Mahmut Tör
- Department of Biology, School of Science and the EnvironmentUniversity of WorcesterWorcesterUK
| | - Ana M. Laxalt
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| |
Collapse
|
6
|
Tahjib-Ul-Arif M, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Modulation of frequency and height of cytosolic calcium spikes by plasma membrane anion channels in guard cells. Biosci Biotechnol Biochem 2021; 85:2003-2010. [PMID: 34191003 DOI: 10.1093/bbb/zbab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022]
Abstract
Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.
Collapse
Affiliation(s)
- Md Tahjib-Ul-Arif
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|