1
|
Bovet L, Battey J, Lu J, Sierro N, Dewey RE, Goepfert S. Nitrate assimilation pathway is impacted in young tobacco plants overexpressing a constitutively active nitrate reductase or displaying a defective CLCNt2. BMC PLANT BIOLOGY 2024; 24:1132. [PMID: 39592946 PMCID: PMC11600588 DOI: 10.1186/s12870-024-05834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). The expression of a deregulated nitrate reductase enzyme (DNR) that is no longer responsive to light regulation is believed to diminish free nitrate pools by immediately channeling incoming nitrate into the nitrate assimilation pathway. The reduction in nitrate observed when the two tobacco gene copies encoding the vacuolar nitrate transporter CLCNt2 were down-regulated by RNAi-mediated suppression or knocked out using the CRISPR-Cas technology was mechanistically distinct; likely attributable to the inability of the tobacco cell to efficiently sequester nitrate into the vacuole where this metabolite is protected from further assimilation. In this study, we used transcriptomic and metabolomic analyses to compare the nitrate assimilation response in tobacco plants either expressing DNR or lacking CLCNt2 function. RESULTS When grown in a controlled environment, both DNR and CLCNt2-KO (CLCKO) plants exhibited (1) reduced nitrate content in the leaf; (2) increased N-assimilation into the amino acids Gln and Asn; and (3) a similar pattern of differential regulation of several genes controlling stress responses, including water stress, and cell wall metabolism in comparison to wild-type plants. Differences in gene regulation were also observed between DNR and CLCKO plants, including genes encoding nitrite reductase and asparagine synthetase. CONCLUSIONS Our data suggest that even though both DNR and CLCKO plants display common characteristics with respect to nitrate assimilation, cellular responses, water stress, and cell wall remodeling, notable differences in gene regulatory patterns between the two low nitrate plants are also observed. These findings open new avenues in using plants fixing more nitrogen into amino acids for plant improvement or nutrition perspectives.
Collapse
Affiliation(s)
- L Bovet
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland.
| | - J Battey
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - J Lu
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - N Sierro
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - R E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - S Goepfert
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| |
Collapse
|
2
|
Zhang K, Yang Q, Bo Y, Zhou Y, Liao N, Lyu X, Yang J, Hu Z, Zhang M. Genome-Wide Association Study Identifies the Serine/Threonine Kinase ClSIK1 for Low Nitrogen Tolerance in Watermelon Species. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39552475 DOI: 10.1111/pce.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Plants have evolved multiple complex mechanisms enabling them to adapt to low nitrogen (LN) stress via increased nitrogen use efficiency (NUE) as nitrogen deficiency in soil is a major factor limiting plant growth and development. However, the adaptive process and evolutionary roles of LN tolerance-related genes in plants remain largely unknown. In this study, we resequenced 191 watermelon accessions and examined their phenotypic differences related to LN tolerance. A major gene ClSIK1 encoding a serine/threonine protein kinase involved in the response to LN stress was identified on chromosome 11 using genome-wide association study and RNA-Seq analysis. According to a functional analysis, ClSIK1 overexpression can increase the root area, total biomass, NUE and LN tolerance by manipulating multiple nitrogen-metabolized genes. Interestingly, the desirable LN-tolerant haplotype ClSIK1HapC was detected in only one wild relative (Citrullus mucosospermus) and likely gradually lost during watermelon domestication and improvement. This study clarified the regulatory effects of ClSIK1 on NUE and adaptations to LN stress, which also identifying valuable haplotypes-resolved gene variants for molecular design breeding of 'green' watermelon varieties highly tolerant to LN stress.
Collapse
Affiliation(s)
- Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Qinrong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Ningbo Weimeng Seed Company, Ningbo, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
3
|
Delgado LD, Nunez-Pascual V, Riveras E, Ruffel S, Gutiérrez RA. Recent advances in local and systemic nitrate signaling in Arabidopsisthaliana. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102605. [PMID: 39033715 DOI: 10.1016/j.pbi.2024.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in Arabidopsis thaliana. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.
Collapse
Affiliation(s)
- Laura D Delgado
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Valentina Nunez-Pascual
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34060, France
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
| |
Collapse
|
4
|
Sámano ML, Nanjareddy K, Arthikala MK. NIN-like proteins (NLPs) as crucial nitrate sensors: an overview of their roles in nitrogen signaling, symbiosis, abiotic stress, and beyond. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1209-1223. [PMID: 39100871 PMCID: PMC11291829 DOI: 10.1007/s12298-024-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Nitrogen is an essential macronutrient critical for plant growth and productivity. Plants have the capacity to uptake inorganic nitrate and ammonium, with nitrate playing a crucial role as a signaling molecule in various cellular processes. The availability of nitrate and the signaling pathways involved finely tune the processes of nitrate uptake and assimilation. NIN-like proteins (NLPs), a group of transcription factors belonging to the RWP-RK gene family, act as major nitrate sensors and are implicated in the primary nitrate response (PNR) within the nucleus of both non-leguminous and leguminous plants through their RWP-RK domains. In leguminous plants, NLPs are indispensable for the initiation and development of nitrogen-fixing nodules in symbiosis with rhizobia. Moreover, NLPs play pivotal roles in plant responses to abiotic stresses, including drought and cold. Recent studies have identified NLP homologs in oomycete pathogens, suggesting their potential involvement in pathogenesis and virulence. This review article delves into the conservation of RWP-RK genes, examining their significance and implications across different plant species. The focus lies on the role of NLPs as nitrate sensors, investigating their involvement in various processes, including rhizobial symbiosis in both leguminous and non-leguminous plants. Additionally, the multifaceted functions of NLPs in abiotic stress responses, developmental processes, and interactions with plant pathogens are explored. By comprehensively analyzing the role of NLPs in nitrate signaling and their broader implications for plant growth and development, this review sheds light on the intricate mechanisms underlying nitrogen sensing and signaling in various plant lineages.
Collapse
Affiliation(s)
- Mariana López Sámano
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| |
Collapse
|
5
|
Zhuo M, Sakuraba Y, Yanagisawa S. Dof1.7 and NIGT1 transcription factors mediate multilayered transcriptional regulation for different expression patterns of NITRATE TRANSPORTER2 genes under nitrogen deficiency stress. THE NEW PHYTOLOGIST 2024; 242:2132-2147. [PMID: 38523242 DOI: 10.1111/nph.19695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Elucidating the mechanisms regulating nitrogen (N) deficiency responses in plants is of great agricultural importance. Previous studies revealed that decreased expression of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) transcriptional repressor genes upon N deficiency is involved in N deficiency-inducible gene expression in Arabidopsis thaliana. However, our knowledge of the mechanisms controlling N deficiency-induced changes in gene expression is still limited. Through the identification of Dof1.7 as a direct target of NIGT1 repressors and a novel N deficiency response-related transcriptional activator gene, we here show that NIGT1 and Dof1.7 transcription factors (TFs) differentially regulate N deficiency-inducible expression of three high-affinity nitrate transporter genes, NRT2.1, NRT2.4, and NRT2.5, which are responsible for most of the soil nitrate uptake activity of Arabidopsis plants under N-deficient conditions. Unlike NIGT1 repressors, which directly suppress NRT2.1, NRT2.4, and NRT2.5 under N-sufficient conditions, Dof1.7 directly activated only NRT2.5 but indirectly and moderately activated NRT2.1 and NRT2.4 under N-deficient conditions, probably by indirectly decreasing NIGT1 expression. Thus, Dof1.7 converted passive transcriptional activation into active and potent transcriptional activation, further differentially enhancing the expression of NRT2 genes. These findings clarify the mechanism underlying different expression patterns of NRT2 genes upon N deficiency, suggesting that time-dependent multilayered transcriptional regulation generates complicated expression patterns of N deficiency-inducible genes.
Collapse
Affiliation(s)
- Mengna Zhuo
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
6
|
Li D, Jin Y, Lu QH, Ren N, Wang YQ, Li QS. Genome-wide identification and expression analysis of NIN-like protein (NLP) genes: Exploring their potential roles in nitrate response in tea plant (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108340. [PMID: 38199025 DOI: 10.1016/j.plaphy.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
NIN-like proteins (NLPs) are evolutionarily conserved transcription factors that are unique to plants and play a pivotal role in responses to nitrate uptake and assimilation. However, a comprehensive analysis of NLP members in tea plants is lacking. The present study performed a genome-wide analysis and identified 33 NLP gene family members of Camellia sinensis that were distributed unequally across 5 chromosomes. Subcellular localisation predictions revealed that all CsNLP proteins were localised in the nucleus. Conservative domain analysis revealed that all of these proteins contained conserved RWP-RK and PB1 domains. Phylogenetic analysis grouped the CsNLP gene family into four clusters. The promoter regions of CsNLPs harboured cis-acting elements associated with plant hormones and abiotic stress responses. Expression profile analysis demonstrated that CsNLP8 was significantly upregulated in roots under nitrate stress conditions. Subcellular localisation analysis found CsNLP8 localised to the nucleus. Dual-luciferase reporter assay demonstrated that CsNLP8 positively regulated the expression of a nitrate transporter gene (CsNRT2.2). These findings provide a comprehensive characterisation of NLP genes in Camellia sinensis and offer insights into the biological function of CsNLP8 in regulating the response to nitrate-induced stress.
Collapse
Affiliation(s)
- Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ya Jin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qin-Hua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Ren
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ying-Qi Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
9
|
Ueda Y, Yanagisawa S. Transcription factor module NLP-NIGT1 fine-tunes NITRATE TRANSPORTER2.1 expression. PLANT PHYSIOLOGY 2023; 193:2865-2879. [PMID: 37595050 PMCID: PMC10663117 DOI: 10.1093/plphys/kiad458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) high-affinity NITRATE TRANSPORTER2.1 (NRT2.1) plays a dominant role in the uptake of nitrate, the most important nitrogen (N) source for most terrestrial plants. The nitrate-inducible expression of NRT2.1 is regulated by NIN-LIKE PROTEIN (NLP) family transcriptional activators and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) family transcriptional repressors. Phosphorus (P) availability also affects the expression of NRT2.1 because the PHOSPHATE STARVATION RESPONSE1 transcriptional activator activates NIGT1 genes in P-deficient environments. Here, we show a biology-based mathematical understanding of the complex regulation of NRT2.1 expression by multiple transcription factors using 2 different approaches: a microplate-based assay for the real-time measurement of temporal changes in NRT2.1 promoter activity under different nutritional conditions, and an ordinary differential equation (ODE)-based mathematical modeling of the NLP- and NIGT1-regulated expression patterns of NRT2.1. Both approaches consistently reveal that NIGT1 stabilizes the amplitude of NRT2.1 expression under a wide range of nitrate concentrations. Furthermore, the ODE model suggests that parameters such as the synthesis rate of NIGT1 mRNA and NIGT1 proteins and the affinity of NIGT1 proteins for the NRT2.1 promoter substantially influence the temporal expression patterns of NRT2.1 in response to nitrate. These results suggest that the NLP-NIGT1 feedforward loop allows a precise control of nitrate uptake. Hence, this study paves the way for understanding the complex regulation of nutrient acquisition in plants, thus facilitating engineered nutrient uptake and plant response patterns using synthetic biology approaches.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki 305-8686, Japan
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Yan D, Nambara E. Conserved and unique functions of NIN-like proteins in nitrate sensing and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111842. [PMID: 37633494 DOI: 10.1016/j.plantsci.2023.111842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Nitrogen is the most abundant element in the atmosphere and serves as the foundation block of life, including plants on earth. Unlike carbon fixation through photosynthesis, plants rely heavily on external supports to acquire nitrogen. To this end, plants have adapted various strategies such as forming mutualistic relationships with nitrogen-fixing bacteria and evolving a large regulatory network that includes multiple transporters, sensors, and transcription factors for fine-tuning nitrate sensing and signaling. Nodule Inception (NIN) and NIN-like protein (NLP) are central in this network by executing multiple functions such as initiating and regulating the nodule symbiosis for nitrogen fixation, acting as the intracellular sensor to monitor the nitrate fluctuations in the environment, and activating the transcription of nitrate-responsive genes for optimal nitrogen uptake, assimilation, and usage. The involvement of NLPs in intracellular nitrate binding and early nitrate responses highlight their pivotal role in the primary nitrate response (PNR). Genome-wide reprogramming in response to nitrate by NLP is highly transient and rapid, requiring regulation in a precise and dynamic manner. This review aims to summarize recent progress in the study of NIN/NLP for a better understanding of the molecular basis of their roles and regulations in nitrate sensing and signaling, with the hope of shedding light on increasing biological nitrogen fixation and improving nitrogen use efficiency (NUE) to minimize fertilizer input in agriculture.
Collapse
Affiliation(s)
- Dawei Yan
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S3B2, Ontario, Canada.
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S3B2, Ontario, Canada
| |
Collapse
|
11
|
Li N, Duan Y, Ye Q, Ma Y, Ma R, Zhao L, Zhu S, Yu F, Qi S, Wang Y. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels. THE NEW PHYTOLOGIST 2023; 240:338-353. [PMID: 37424317 DOI: 10.1111/nph.19129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Identifying new nitrate regulatory genes and illustrating their mechanisms in modulating nitrate signaling are of great significance for achieving the high yield and nitrogen use efficiency (NUE) of crops. Here, we screened a mutant with defects in nitrate response and mapped the mutation to the gene eIF4E1 in Arabidopsis. Our results showed that eIF4E1 regulated nitrate signaling and metabolism. Ribo-seq and polysome profiling analysis revealed that eIF4E1 modulated the amount of some nitrogen (N)-related mRNAs being translated, especially the mRNA of NRT1.1 was reduced in the eif4e1 mutant. RNA-Seq results enriched some N-related genes, supporting that eIF4E1 is involved in nitrate regulation. The genetic analysis indicated that eIF4E1 worked upstream of NRT1.1 in nitrate signaling. In addition, an eIF4E1-interacting protein GEMIN2 was identified and found to be involved in nitrate signaling. Further investigation showed that overexpression of eIF4E1 promoted plant growth and enhanced yield and NUE. These results demonstrate that eIF4E1 regulates nitrate signaling by modulating NRT1.1 at both translational and transcriptional levels, laying the foundation for future research on the regulation of mineral nutrition at the translational level.
Collapse
Affiliation(s)
- Na Li
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yawen Duan
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qing Ye
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhan Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongjie Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Shengdong Qi
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
12
|
Jia Y, Qin D, Zheng Y, Wang Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int J Mol Sci 2023; 24:14406. [PMID: 37833854 PMCID: PMC10572113 DOI: 10.3390/ijms241914406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.
Collapse
Affiliation(s)
- Yancong Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yulu Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
13
|
Bornowski N, Hart JP, Palacios AV, Ogg B, Brick MA, Hamilton JP, Beaver JS, Buell CR, Porch T. Genetic variation in a tepary bean (Phaseolus acutifolius A. Gray) diversity panel reveals loci associated with biotic stress resistance. THE PLANT GENOME 2023; 16:e20363. [PMID: 37332263 DOI: 10.1002/tpg2.20363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
Tepary bean (Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome-wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties within P. acutifolius. Genome-wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement.
Collapse
Affiliation(s)
- Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - John P Hart
- USD-ARS-Tropical Agriculture Research Station, Mayagüez, Puerto Rico, USA
| | | | - Barry Ogg
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - James S Beaver
- Department of Agro-Environmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - Timothy Porch
- USD-ARS-Tropical Agriculture Research Station, Mayagüez, Puerto Rico, USA
| |
Collapse
|
14
|
Wu Y, Su SX, Wang T, Peng GH, He L, Long C, Li W. Identification and expression characteristics of NLP (NIN-like protein) gene family in pepper (Capsicum annuum L.). Mol Biol Rep 2023; 50:6655-6668. [PMID: 37358766 DOI: 10.1007/s11033-023-08587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Pepper (Capsicum annum L.) is the main crop in the vegetable industry. The growth and development of peppers are regulated by nitrate, but there is limited research on the molecular mechanisms of nitrate absorption and assimilation in peppers. A plant specific transcription factor NLP plays an important role in nitrate signal transduction. METHODS AND RESULTS In this study, a total of 7 NLP members were identified based on pepper genome data. Two nitrogen transport elements (GCN4) were found in the CaNLP5 promoter. In the phylogenetic tree, CaNLP members are divided into three branches, with pepper NLP and tomato NLP having the closest genetic relationship. The expression levels of CaNLP1, CaNLP3, and CaNLP4 are relatively high in the roots, stems, and leaves. The expression level of CaNLP7 gene is relatively high during the 5-7 days of pepper fruit color transformation. After various non-Biotic stress and hormone treatments, the expression of CaNLP1 was at a high level. The expression of CaNLP3 and CaNLP4 was down regulated in leaves, but up regulated in roots. Under conditions of nitrogen deficiency and sufficient nitrate, the expression patterns of NLP genes in pepper leaves and roots were determined. CONCLUSION These results provide important insights into the multiple functions of CaNLPs in regulating nitrate absorption and transport.
Collapse
Affiliation(s)
- Yuan Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Shi-Xian Su
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Tao Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China
| | - Gui-Hua Peng
- Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China
| | - Lei He
- Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
15
|
Jiang Q, Wu X, Zhang X, Ji Z, Cao Y, Duan Q, Huang J. Genome-Wide Identification and Expression Analysis of AS2 Genes in Brassica rapa Reveal Their Potential Roles in Abiotic Stress. Int J Mol Sci 2023; 24:10534. [PMID: 37445710 DOI: 10.3390/ijms241310534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.
Collapse
Affiliation(s)
- Qiwei Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
16
|
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. THE NEW PHYTOLOGIST 2023; 238:2113-2129. [PMID: 36945893 DOI: 10.1111/nph.18896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.
Collapse
Affiliation(s)
- Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Xin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumiao Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059, Zaragoza, Spain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Zhang Y, Wang R, Wang X, Zhao C, Shen H, Yang L. Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109052. [PMID: 37240398 DOI: 10.3390/ijms24109052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is of great significance for plant development and crop yield. Recently, nitric oxide (NO) has been shown to not only serve as an important nitrogen source during seed development but also to participate in a variety of stress responses in plants to high salt, drought, and high temperature. In addition, NO can affect the process of seed germination by integrating multiple signaling pathways. However, due to the instability of NO gas activity, the network mechanism for its fine regulation of seed germination remains unclear. Therefore, this review aims to summarize the complex anabolic processes of NO in plants, to analyze the interaction mechanisms between NO-triggered signaling pathways and different plant hormones such as abscisic acid (ABA) and gibberellic acid (GA), ethylene (ET) and reactive oxygen species (ROS) signaling molecules, and to discuss the physiological responses and molecular mechanisms of seeds during the involvement of NO in abiotic stress, so as to provide a reference for solving the problems of seed dormancy release and improving plant stress tolerance.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruirui Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaodong Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Caihong Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Research Center of Korean Pine Engineering and Technology, National Forestry and Grassland Administration, Harbin 150040, China
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
18
|
Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A. The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. THE PLANT CELL 2023; 35:1429-1454. [PMID: 36752317 PMCID: PMC10118280 DOI: 10.1093/plcell/koad025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.
Collapse
Affiliation(s)
- Mickaël Durand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
- UMR CNRS 7267, EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Virginie Brehaut
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Gilles Clement
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Julien Macé
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Garry Duville
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| |
Collapse
|
19
|
Chan C. The distinct functions of NODULE INCEPTION-like proteins in nitrate response. THE PLANT CELL 2023; 35:1296-1297. [PMID: 36781394 PMCID: PMC10118256 DOI: 10.1093/plcell/koad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
|
20
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
21
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
22
|
Ariga T, Sakuraba Y, Zhuo M, Yang M, Yanagisawa S. The Arabidopsis NLP7-HB52/54-VAR2 pathway modulates energy utilization in diverse light and nitrogen conditions. Curr Biol 2022; 32:5344-5353.e6. [PMID: 36332616 DOI: 10.1016/j.cub.2022.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
In plants, nitrate is the dominant nitrogen (N) source and a critical nutrient signal regulating various physiological and developmental processes.1,2,3,4 Nitrate-responsive gene regulatory networks are widely believed to control growth, development, and life cycle in addition to N acquisition and utilization,1,2,3,4 and NIN-LIKE PROTEIN (NLP) transcriptional activators have been identified as the master regulators governing the networks.5,6,7 However, it remains to be elucidated how nitrate signaling regulates respective physiological and developmental processes. Here, we have identified a new nitrate-activated transcriptional cascade involved in chloroplast development and the maintenance of chloroplast function in Arabidopsis. This cascade consisting of NLP7 and two homeodomain-leucine zipper (HD-Zip) class I transcription factors, HOMEOBOX PROTEIN52 (HB52) and HB54,8,9 was responsible for nitrate- and light-dependent expression of VAR2 encoding the FtsH2 subunit of the chloroplast FtsH protease involved in the quality control of photodamaged thylakoid membrane proteins.10,11 Consistently, the nitrate-activated NLP7-HB52/54-VAR2 pathway underpinned photosynthetic light energy utilization, especially in high light environments. Furthermore, genetically enhancing the NLP7-HB52/54-VAR2 pathway resulted in improved light energy utilization under high light and low N conditions, a superior agronomic trait. These findings shed light on a new role of nitrate signaling and a novel mechanism for integrating information on N nutrient and light environments, providing a hint for enhancing the light energy utilization of plants in low N environments.
Collapse
Affiliation(s)
- Takuto Ariga
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Mailun Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Raytek LM, Dastmalchi M. Plant nutrition: An architect of nitrate-hunger cues. Curr Biol 2022; 32:R1320-R1323. [PMID: 36473445 DOI: 10.1016/j.cub.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrate perception and uptake are critical for plant well-being. A known actor in nitrate signaling, the transcription factor NLP7, has now been reported to have a new role: as a nitrate sensor. The latter function has been characterized and exploited to generate a fluorescent nitrate biosensor.
Collapse
Affiliation(s)
- Lee Marie Raytek
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
24
|
Liu KH, Liu M, Lin Z, Wang ZF, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 2022; 377:1419-1425. [PMID: 36137053 DOI: 10.1126/science.add1104] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nitrate is an essential nutrient and signaling molecule for plant growth. Plants sense intracellular nitrate to adjust their metabolic and growth responses. Here we identify the primary nitrate sensor in plants. We found that mutation of all seven Arabidopsis NIN-like protein (NLP) transcription factors abolished plants' primary nitrate responses and developmental programs. Analyses of NIN-NLP7 chimeras and nitrate binding revealed that NLP7 is derepressed upon nitrate perception via its amino terminus. A genetically encoded fluorescent split biosensor, mCitrine-NLP7, enabled visualization of single-cell nitrate dynamics in planta. The nitrate sensor domain of NLP7 resembles the bacterial nitrate sensor NreA. Substitutions of conserved residues in the ligand-binding pocket impaired the ability of nitrate-triggered NLP7 to control transcription, transport, metabolism, development, and biomass. We propose that NLP7 represents a nitrate sensor in land plants.
Collapse
Affiliation(s)
- Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.,Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.,Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Menghong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Ziwei Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Binqing Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Aping Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Mineko Konishi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Arabidopsis nitrate-induced aspartate oxidase gene expression is necessary to maintain metabolic balance under nitrogen nutrient fluctuation. Commun Biol 2022; 5:432. [PMID: 35534536 PMCID: PMC9085827 DOI: 10.1038/s42003-022-03399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrate is a nutrient signal that regulates growth and development through NLP transcription factors in plants. Here we identify the L-aspartate oxidase gene (AO) necessary for de novo NAD+ biosynthesis as an NLP target in Arabidopsis. We investigated the physiological significance of nitrate-induced AO expression by expressing AO under the control of the mutant AO promoter lacking the NLP-binding site in the ao mutant. Despite morphological changes and severe reductions in fresh weight, the loss of nitrate-induced AO expression resulted in minimum effects on NAD(H) and NADP(H) contents, suggesting compensation of decreased de novo NAD+ biosynthesis by reducing the growth rate. Furthermore, metabolite profiling and transcriptome analysis revealed that the loss of nitrate-induced AO expression causes pronounced impacts on contents of TCA cycle- and urea cycle-related metabolites, gene expression profile, and their modifications in response to changes in the nitrogen nutrient condition. These results suggest that proper maintenance of metabolic balance requires the coordinated regulation of multiple metabolic pathways by NLP-mediated nitrate signaling in plants. NLP transcription factors directly regulate aspartate oxidase gene expression connected to multiple metabolic pathways in Arabidopsis in response to changes in the nitrogen nutrient condition.
Collapse
|
27
|
Molecular mechanisms underlying nitrate responses in plants. Curr Biol 2022; 32:R433-R439. [DOI: 10.1016/j.cub.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, You CX, Wang XF. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111158. [PMID: 35151440 DOI: 10.1016/j.plantsci.2021.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen is an essential nutrient for plant growth and development. Low utilization of nitrogen fertilizer during agricultural production causes a series of environmental problems, such as water eutrophication, soil acidity, and air pollution. Investigating the patterns and mechanisms of crop NO3- absorption and utilization therefore key to fully improving crop nitrogen utilization rates and promoting sustainable agricultural development. Apple is one of the most important horticultural crops in the world. Its nitrogen demand by apple during the growth period is very high, but few studies have been performed on apple genes, that regulate the NO3- response. Here, we found that the apple transcription factor MdNLP7 promoted nitrogen absorption and assimilation by activating the expression of MdNIA2 and MdNRT1.1. MdNLP7 also regulated H2O2 content by increasing catalase activity, which may also influence nitrate utilization. Our findings provide insight into the mechanisms by which MdNLP7 controls nitrate utilization in apple.
Collapse
Affiliation(s)
- Zi-Quan Feng
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Tong Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
29
|
Hernández-Reyes C, Lichtenberg E, Keller J, Delaux PM, Ott T, Schenk ST. NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:230-243. [PMID: 34813707 DOI: 10.1094/mpmi-10-21-0261-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrogen is an essential macronutrient and a key cellular messenger. Plants have evolved refined molecular systems to sense the cellular nitrogen status. This is exemplified by the root nodule symbiosis between legumes and symbiotic rhizobia, where nitrate availability inhibits this mutualistic interaction. Additionally, nitrate also functions as a metabolic messenger, resulting in nitrate signaling cascades which intensively crosstalk with other physiological pathways. Nodule inception-like proteins (NLPs) are key players in nitrate signaling and regulate nitrate-dependent transcription during legume-rhizobia interactions. Nevertheless, the coordinated interplay between nitrate signaling pathways and rhizobacteria-induced responses remains to be elucidated. In our study, we investigated rhizobia-induced changes in the root system architecture of the non-legume host arabidopsis under different nitrate conditions. We demonstrate that rhizobium-induced lateral root growth and increased root hair length and density are regulated by a nitrate-related signaling pathway. Key players in this process are AtNLP4 and AtNLP5, because the corresponding mutants failed to respond to rhizobia. At the cellular level, AtNLP4 and AtNLP5 control a rhizobia-induced decrease in cell elongation rates, while additional cell divisions occurred independently of AtNLP4. In summary, our data suggest that root morphological responses to rhizobia are coordinated by a newly considered nitrate-related NLP pathway that is evolutionarily linked to regulatory circuits described in legumes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Casandra Hernández-Reyes
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet Tolosan, France
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian T Schenk
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|