1
|
Guo J, Qiu M, Li L, Gao Z, Zhou G, Liu X. Comparative transcriptomic analysis and volatile compound characterization of Aspergillus tubingensis and Penicillium oxalicum during their infestation of Japonica rice. Food Microbiol 2025; 125:104626. [PMID: 39448170 DOI: 10.1016/j.fm.2024.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 10/26/2024]
Abstract
Volatile organic compounds (VOCs), a byproduct of mold metabolism, have garnered increasing interest because the VOCs can be used to detect food early contamination. So far, the use of VOCs as indicators of rice mildew, specifically caused by Aspergillus tubingensis and Penicillium oxalicum, and the mechanisms of their generation are not well investigated. This study examines the VOCs produced by these molds during paddy storage, utilizing headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We further elucidate the mechanisms underlying the formation of these VOCs through a comparative transcriptomic analysis. The VOCs characteristic to A. tubingensis and P. oxalicum, identified with a VIP value > 1 in the partial least squares discriminant analysis (PLS-DA) model, are primarily alkenes. Our transcriptome analysis uncovers key metabolic pathways in both molds, including energy metabolism and pathways related to volatile substance formation, and identifies differentially expressed genes associated with alkane and alcohol formation.
Collapse
Affiliation(s)
- Jian Guo
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| | - Mingming Qiu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Ling Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhenbo Gao
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Guoxin Zhou
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xingquan Liu
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| |
Collapse
|
2
|
Mancheary John PU, Kandula SK, Cheekatla SS, Metta VSMK, Peddi K. Qualitative and Untargeted Volatilome Fingerprinting of Aspergillus sp. and Bulbithecium sp. by HS-SPME-GCMS and Functional Interactions. J Basic Microbiol 2024:e2400210. [PMID: 39014937 DOI: 10.1002/jobm.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Research on fungal volatile organic compounds (VOCs) has increased worldwide in the last 10 years, but marine fungal volatilomes remain underexplored. Similarly, the hormone-signaling pathways, agronomic significance, and biocontrol potential of VOCs in plant-associated fungi make the area of research extremely promising. In the current investigation, VOCs of the isolates-Aspergillus sp. GSBT S13 and GSBT S14 from marine sediments, and Bulbithecium sp. GSBT E3 from Eucalyptus foliage were extracted using Head Space solid phase microextraction, followed by gas chromatography-mass spectrometry, identification, statistical analyses, and prediction of functions by KEGG COMPOUND and STITCH 5.0 databases. The significance of this research is fingerprinting VOCs of the isolates from distinct origins, identification of compounds using three libraries (NIST02, NIST14, and W9N11), and using bioinformatic tools to perform functional analysis. The most important findings include the identification of previously unreported compounds in fungi-1-methoxy naphthalene, diethyl phthalate, pentadecane, pristane, and nonanal; the prediction of the involvement of small molecules in the degradation of aromatic compound pathways and activation, inhibition, binding, and catalysis of metabolites with predicted protein partners. This study has ample opportunity to validate the findings and understand the mechanism or mode of action, the interspecies interactions, and the role of the metabolites in geochemical cycles.
Collapse
Affiliation(s)
- Prathyash Ushus Mancheary John
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Siva Kumar Kandula
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Satyanarayana Swamy Cheekatla
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | | | - Koteswari Peddi
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
3
|
Song W, Sun M, Lu H, Wang S, Wang R, Shang X, Feng T. Variations in Key Aroma Compounds and Aroma Profiles in Yellow and White Cultivars of Flammulina filiformis Based on Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Experiments Coupled with Odor Threshold Concentrations. Foods 2024; 13:684. [PMID: 38472798 DOI: 10.3390/foods13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flammulina filiformis (F. filiformis) is called the 'benefiting intelligence' mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was "sweet" for the yellow strain, while it was "green" for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.
Collapse
Affiliation(s)
- Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shengyou Wang
- Institute of Edible Fungi, Sanming Academy of Agricultural Sciences, Sanming 365000, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ruijuan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
4
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. SCIENCE ADVANCES 2023; 9:eade4809. [PMID: 36652525 PMCID: PMC9848476 DOI: 10.1126/sciadv.ade4809] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.
Collapse
Affiliation(s)
- Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Pon
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| |
Collapse
|
7
|
Chandrasekaran M, Paramasivan M, Sahayarayan JJ. Microbial Volatile Organic Compounds: An Alternative for Chemical Fertilizers in Sustainable Agriculture Development. Microorganisms 2022; 11:microorganisms11010042. [PMID: 36677334 PMCID: PMC9861404 DOI: 10.3390/microorganisms11010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Microorganisms are exceptional at producing several volatile substances called microbial volatile organic compounds (mVOCs). The mVOCs allow the microorganism to communicate with other organisms via both inter and intracellular signaling pathways. Recent investigation has revealed that mVOCs are chemically very diverse and play vital roles in plant interactions and microbial communication. The mVOCs can also modify the plant's physiological and hormonal pathways to augment plant growth and production. Moreover, mVOCs have been affirmed for effective alleviation of stresses, and also act as an elicitor of plant immunity. Thus, mVOCs act as an effective alternative to various chemical fertilizers and pesticides. The present review summarizes the recent findings about mVOCs and their roles in inter and intra-kingdoms interactions. Prospects for improving soil fertility, food safety, and security are affirmed for mVOCs application for sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Republic of Korea
- Correspondence: ; Tel.: +82-2-3408-4026
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | | |
Collapse
|
8
|
Bissaro B, Kodama S, Nishiuchi T, Díaz-Rovira AM, Hage H, Ribeaucourt D, Haon M, Grisel S, Simaan AJ, Beisson F, Forget SM, Brumer H, Rosso MN, Guallar V, O’Connell R, Lafond M, Kubo Y, Berrin JG. Tandem metalloenzymes gate plant cell entry by pathogenic fungi. SCIENCE ADVANCES 2022; 8:eade9982. [PMID: 36542709 PMCID: PMC9770985 DOI: 10.1126/sciadv.ade9982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.
Collapse
Affiliation(s)
- Bastien Bissaro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 920-0934 Kanazawa, Japan
| | | | - Hayat Hage
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - David Ribeaucourt
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - A. Jalila Simaan
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Institut de Biosciences et Biotechnologies d’Aix-Marseille (UMR7265), CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stephanie M. Forget
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, E-08034 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Richard O’Connell
- INRAE, UMR BIOGER, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Mickaël Lafond
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
- Corresponding author. (Y.K.); (J.-G.B.)
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Corresponding author. (Y.K.); (J.-G.B.)
| |
Collapse
|
9
|
Vlot AC, Rosenkranz M. Volatile compounds-the language of all kingdoms? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:445-448. [PMID: 35024870 PMCID: PMC8757488 DOI: 10.1093/jxb/erab528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|