1
|
Porras-Domínguez JR, Cruz-Migoni A, Carr SB, Rodríguez-Alegría ME, López-Munguía A, Van den Ende W. Understanding the Endo- and Exo-mechanisms Involved in the Enzymatic Hydrolysis of Levan and Inulin Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9946-9962. [PMID: 40227403 DOI: 10.1021/acs.jafc.5c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
This study explores the endo-levanase from Bacillus licheniformis (LevB1), providing new insights into how this enzyme selectively hydrolyzes levan chains. By analyzing the first resolved crystal structure of LevB1, conducting detailed simulations, and comparing it to other endo- and exo-fructanases, we identified key factors underlying its specificity. Experiments designed to explore this specificity revealed the critical role of three minus and three plus subsites in determining the enzyme's endo-specificity. We identified six specific subsites essential for the enzyme's ability to cleave levan chains at random internal linkages (endo-specificity) rather than at defined fructosyl nonreducing ends (exo-specificity). This research underscores the importance of enzyme-fructan interaction stability during the catalytic reaction in this process, highlighting the need for dynamic modeling to fully capture enzyme specificity, as conventional docking alone cannot fully explain the stability and motion of carbohydrate chains in the catalytic site. These findings contribute to a deeper understanding of the factors that influence endo- and exo-cleavage specificity in levan and inulin polymers, with broader implications for fructan metabolism and, eventually, the industrial production of fructose and/or fructo-oligosaccharides.
Collapse
Affiliation(s)
- Jaime Ricardo Porras-Domínguez
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | - Abimael Cruz-Migoni
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science an Innovation Campus, Didcot OX11 OFA, U.K
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science an Innovation Campus, Didcot OX11 OFA, U.K
| | | | - Agustín López-Munguía
- Instituto de Biotecnología UNAM, Av. Universidad #2001, Col. Chamilpa, C.P, Cuernavaca 62210, Morelos Mexico
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| |
Collapse
|
2
|
Xu L, Liang J, Xu H, Chen Q, Liu J, Luo W, Zhao Z, Wei Z, Chen L. Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin. Int J Biol Macromol 2024; 282:137288. [PMID: 39510478 DOI: 10.1016/j.ijbiomac.2024.137288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Exo-fructanase enzymes catalyze the hydrolysis of β-2,6 and β-2,1 linkages in levan and inulin fructans, respectively, yielding fructose. In this study, we identified a multidomain exo-fructanase, Mle3A, from Microbacterium sp. XL1. Mle3A is a 124.2 kDa protein comprising a GH32 N-terminal five-bladed β-propeller structure, a GH32 C-terminal β-sandwich module, and a fibronectin type 3 domain. The recombinant enzyme rMle3A exhibited peak activity at temperatures of 50-55 °C and a pH of 5.5, demonstrating hydrolytic capabilities towards levan, inulin, sucrose, and raffinose. The activity of rMle3A on inulin was enhanced in the presence of Mn2+, Ca2+, Ba2+, Sr2+, Co2+, and Mg2+ ions. Notably, 5 mM Mn2+ increased the inulin hydrolytic activity of rMle3A by over 187 %, and the enzyme's activity was unaffected by NaCl concentrations ranging from 0 to 3 M. Purified rMle3A was effectively utilized to produce high fructose syrup from inulin, achieving a maximum fructose concentration of 26.98 g/L and 71.9 % inulin hydrolysis under optimal conditions (85 rpm, 50 °C, pH 5.5) within 2.5 h. This study introduces a new salt-tolerant, multi-ion facilitated fructanase, rMle3A, for the conversion of inulin biomass into high fructose syrup and other high-value chemicals.
Collapse
Affiliation(s)
- Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| | - Jing Liang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Jiaqi Liu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Wei Luo
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Ziyan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| |
Collapse
|
3
|
Riseh RS, Fathi F, Vatankhah M, Kennedy JF. Exploring the role of levan in plant immunity to pathogens: A review. Int J Biol Macromol 2024; 279:135419. [PMID: 39245096 DOI: 10.1016/j.ijbiomac.2024.135419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
This review article delves into the intricate relationship between levan, a versatile polysaccharide, and its role in enhancing plant resistance against pathogens. By exploring the potential applications of levan in agriculture and biotechnology, such as crop protection, stress tolerance enhancement, and biotechnological innovations, significant advancements in sustainable agriculture are uncovered. Despite challenges in optimizing application methods and addressing regulatory hurdles, understanding the mechanisms of levan-mediated plant immunity offers promising avenues for future research. This review underscores the implications of utilizing levan to develop eco-friendly solutions, reduce reliance on chemical pesticides, and promote sustainable agricultural practices. Ultimately, by unraveling the pivotal role of levan in plant-pathogen interactions, this review sets the stage for transformative innovations in agriculture and highlights the path towards a more resilient and sustainable agricultural future.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
4
|
Radosavljević M, Belović M, Cvetanović Kljakić A, Torbica A. Production, modification and degradation of fructans and fructooligosacharides by enzymes originated from plants. Int J Biol Macromol 2024; 269:131668. [PMID: 38649077 DOI: 10.1016/j.ijbiomac.2024.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Non-starch polysaccharides exhibit numerous beneficial health effects but compounds belonging to FODMAP (Fermentable Oligo- Di- and Monosaccharides and Polyols) has been recently connected to several gastrointestinal disorders. This review presents integrated literature data on the occurrence and types of fructans and fructooligosaccharids (classified as FODMAPs) as well as their degrading enzymes present in plants. Plants from the family Asteraceae and many monocotyledones, including families Poaceae and Liliaceae, are the most abundant sources of both fructans and fructan-degrading enzymes. So far, vast majority of publications concerning the application of these specific plants in production of bakery products is related to increase of dietary fibre content in these products. However, there is limited research on their effect on FODMAP content and fibre balance. The authors emphasize the possibility of application of enzyme rich plant extract in food production casting light on the new scientific approach to fibre modification.
Collapse
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | | | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| |
Collapse
|
5
|
Sivaramakrishnan M, Veeraganti Naveen Prakash C, Chandrasekar B. Multifaceted roles of plant glycosyl hydrolases during pathogen infections: more to discover. PLANTA 2024; 259:113. [PMID: 38581452 DOI: 10.1007/s00425-024-04391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
MAIN CONCLUSION Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.
Collapse
Affiliation(s)
| | | | - Balakumaran Chandrasekar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, 333031, India.
| |
Collapse
|
6
|
Versluys M, Porras-Domínguez JR, Voet A, Struyf T, Van den Ende W. Insights in inulin binding and inulin oligosaccharide formation by novel multi domain endo-inulinases from Botrytis cinerea. Carbohydr Polym 2024; 328:121690. [PMID: 38220320 DOI: 10.1016/j.carbpol.2023.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
World-wide, pathogenic fungi such as Botrytis cinerea cause tremendous yield losses in terms of food production and post-harvest food decay. Many fungi produce inulin-type oligosaccharides (IOSs) from inulin through endo-inulinases which typically show a two domain structure. B.cinerea lacks a two domain endo-inulinase but contains a three domain structure instead. Genome mining revealed three and four domain (d4) enzymes in the fungal kingdom. Here, three and two domain enzymes were compared in their capacity to produce IOSs from inulin. Hill kinetics were observed in three domain enzymes as compared to Michaelis-Menten kinetics in two domain enzymes, suggesting that the N-terminal extension functions as a carbohydrate binding module. Analysis of the IOS product profiles generated from purified GF6, GF12, GF16 and GF18 inulins and extensive sugar docking approaches led to enhanced insights in the active site functioning, revealing subtle differences between the endo-inulinases from Aspergillus niger and B. cinerea. Improved insights in structure-function relationships in fungal endo-inulinases offer opportunities to develop superior enzymes for the production of specific IOS formulations to improve plant and animal health (priming agents, prebiotics).
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Jaime Ricardo Porras-Domínguez
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Arnout Voet
- Laboratory of Biochemistry, Molecular and Structural Biology, KU Leuven, Celestijnenlaan 200g, 3001 Leuven, Belgium.
| | - Tom Struyf
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Wang H, Xu D, Jiang F, Wang S, Wang A, Liu H, Lei L, Qian W, Fan W. The genomes of Dahlia pinnata, Cosmos bipinnatus, and Bidens alba in tribe Coreopsideae provide insights into polyploid evolution and inulin biosynthesis. Gigascience 2024; 13:giae032. [PMID: 38869151 PMCID: PMC11170221 DOI: 10.1093/gigascience/giae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.
Collapse
Affiliation(s)
- Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wanqiang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
8
|
Nguyen TNH, Leclerc L, Manzanares-Dauleux MJ, Gravot A, Vicré M, Morvan-Bertrand A, Prud'homme MP. Fructan exohydrolases (FEHs) are upregulated by salicylic acid together with defense-related genes in non-fructan accumulating plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13975. [PMID: 37616010 DOI: 10.1111/ppl.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Laëtitia Leclerc
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | | | - Antoine Gravot
- Institut Agro, Université Rennes, INRAE, IGEPP, Le Rheu, France
| | - Maïté Vicré
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Annette Morvan-Bertrand
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | - Marie-Pascale Prud'homme
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| |
Collapse
|
9
|
Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4908-4922. [PMID: 35552692 DOI: 10.1093/jxb/erac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the β-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.
Collapse
Affiliation(s)
- Satoshi Oku
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Keiji Ueno
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Yukiko Sawazaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tomoo Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Yutaka Jitsuyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takashi Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shuichi Onodera
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Kaien Fujino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
10
|
Van den Ende W. Different evolutionary pathways to generate plant fructan exohydrolases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4620-4623. [PMID: 35950463 PMCID: PMC9366321 DOI: 10.1093/jxb/erac305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article comments on: Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. 2022. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). Journal of Experimental Botany 73,4908–4922.
Collapse
|
11
|
Lian D, Zhuang S, Shui C, Zheng S, Ma Y, Sun Z, Porras-Domínguez JR, Öner ET, Liang M, Van den Ende W. Characterization of inulolytic enzymes from the Jerusalem artichoke-derived Glutamicibacter mishrai NJAU-1. Appl Microbiol Biotechnol 2022; 106:5525-5538. [PMID: 35896838 DOI: 10.1007/s00253-022-12088-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
The rhizosphere context of inulin-accumulating plants, such as Jerusalem artichoke (Helianthus tuberosus), is an ideal starting basis for the discovery of inulolytic enzymes with potential for bio fructose production. We isolated a Glutamicibacter mishrai NJAU-1 strain from this context, showing exo-inulinase activity, releasing fructose from fructans. The growth conditions (pH 9.0; 15 °C) were adjusted, and the production of inulinase by Glutamicibacter mishrai NJAU-1 increased by 90% (0.32 U/mL). Intriguingly, both levan and inulin, but not fructose and sucrose, induced the production of exo-inulinase activity. Two exo-inulinase genes (inu1 and inu2) were cloned and heterologously expressed in Pichia pastoris. While INU2 preferentially hydrolyzed longer inulins, the smallest fructan 1-kestose appeared as the preferred substrate for INU1, also efficiently degrading nystose and sucrose. Active site docking studies with GFn- and Fn-type small inulins (G is glucose, F is fructose, and n is the number of β (2-1) bound fructose moieties) revealed subtle substrate differences between INU1 and INU2. A possible explanation about substrate specificity and INU's protein structure is then suggested. KEY POINTS: • A Glutamicibacter mishrai strain harbored exo-inulinase activity. • Fructans induced the inulolytic activity in G. mishrai while the inulolytic activity was optimized at pH 9.0 and 15 °C. • Two exo-inulinases with differential substrate specificity were characterized.
Collapse
Affiliation(s)
- Dan Lian
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Zhuang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Shui
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shicheng Zheng
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Zongjiu Sun
- College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
| | - Jaime R Porras-Domínguez
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| | - Mingxiang Liang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| |
Collapse
|
12
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Versluys M, Van den Ende W. Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against Botrytis cinerea. Biomolecules 2022; 12:370. [PMID: 35327562 PMCID: PMC8945012 DOI: 10.3390/biom12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|