1
|
Zhu S, Guo Q, Xue Y, Lu X, Lai T, Liang C, Tian J. Impaired glycosylation of GmPAP15a, a root-associated purple acid phosphatase, inhibits extracellular phytate-P utilization in soybean. PLANT, CELL & ENVIRONMENT 2024; 47:259-277. [PMID: 37691629 DOI: 10.1111/pce.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.
Collapse
Affiliation(s)
- Shengnan Zhu
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Bioscience, Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Qi Guo
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yingbin Xue
- Department of Agriculture, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xing Lu
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Tao Lai
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Bwalya J, Widyasari K, Völz R, Kim KH. Chloroplast-related host proteins interact with NIb and NIa-Pro of soybeans mosaic virus and induce resistance in the susceptible cultivar. Virus Res 2023; 336:199205. [PMID: 37607595 PMCID: PMC10472001 DOI: 10.1016/j.virusres.2023.199205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
To gain a deeper understanding of the molecular mechanisms involved in viral infection and the corresponding plant resistance responses, it is essential to investigate the interactions between viral and host proteins. In the case of viral infections in plants, a significant portion of the affected gene products are closely associated with chloroplasts and photosynthesis. However, the molecular mechanisms underlying the interplay between the virus and host chloroplast proteins during replication remain poorly understood. In our previous study, we made an interesting discovery regarding soybean mosaic virus (SMV) infection in resistant and susceptible soybean cultivars. We found that the photosystem I (PSI) subunit (PSaC) and ATP synthase subunit α (ATPsyn-α) genes were up-regulated in the resistant cultivar following SMV-G7H and SMV-G5H infections compared to the susceptible cultivar. Overexpression of these two genes within the SMV-G7H genome in the susceptible cultivar Lee74 (rsv3-null) reduced SMV accumulation, whereas silencing of the PSaC and ATPsyn-α genes promoted SMV accumulation. We have also found that the PSaC and ATPsyn-α proteins are present in the chloroplast envelope, nucleus, and cytoplasm. Building on these findings, we now characterized protein-protein interactions between PSaC and ATPsyn-α with two viral proteins, NIb and NIa-Pro, respectively, of SMV. Through co-immunoprecipitation (Co-IP) experiments, we confirmed the interactions between these proteins. Moreover, when the C-terminal region of either PSaC or ATPsyn-α was overexpressed in the SMV-G7H genome, we observed a reduction in viral accumulation and systemic infection in the susceptible cultivar. Based on these results, we propose that the PSaC and ATPsyn-α genes play a modulatory role in conferring resistance to SMV infection by influencing the function of NIb and NIa-Pro-in SMV replication and movement. The identification of these photosynthesis-related genes as key players in the interplay between the virus and the host provides valuable insights for developing more targeted control strategies against SMV. Additionally, by utilizing these genes, it may be possible to genetically engineer plants with improved photosynthetic efficiency and enhanced resistance to SMV infection.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ronny Völz
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wang H, Wang L, Yang M, Zhang N, Li J, Wang Y, Wang Y, Wang X, Ruan Y, Xu S. Growth and DNA Methylation Alteration in Rice ( Oryza sativa L.) in Response to Ozone Stress. Genes (Basel) 2023; 14:1888. [PMID: 37895237 PMCID: PMC10606928 DOI: 10.3390/genes14101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
With the development of urban industrialization, the increasing ozone concentration (O3) at ground level stresses on the survival of plants. Plants have to adapt to ozone stress. DNA methylation is crucial for a rapid response to abiotic stress in plants. Little information is known regarding the epigenetic response of DNA methylation of plants to O3 stress. This study is designed to explore the epigenetic mechanism and identify a possible core modification of DNA methylation or genes in the plant, in response to O3 stress. We investigated the agronomic traits and genome-wide DNA methylation variations of the Japonica rice cultivar Nipponbare in response to O3 stress at three high concentrations (80, 160, and 200 nmol·mol-1), simulated using open-top chambers (OTC). The flag leaf length, panicle length, and hundred-grain weight of rice showed beneficial effects at 80 nmol·mol-1 O3 and an inhibitory effect at both 160 and 200 nmol·mol-1 O3. The methylation-sensitive amplified polymorphism results showed that the O3-induced genome-wide methylation alterations account for 14.72-15.18% at three different concentrations. Our results demonstrated that methylation and demethylation alteration sites were activated throughout the O3 stress, mainly at CNG sites. By recovering and sequencing bands with methylation alteration, ten stress-related differentially amplified sequences, widely present on different chromosomes, were obtained. Our findings show that DNA methylation may be an active and rapid epigenetic response to ozone stress. These results can provide us with a theoretical basis and a reference to look for more hereditary information about the molecular mechanism of plant resistance to O3 pollution.
Collapse
Affiliation(s)
- Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Long Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Mengke Yang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ning Zhang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Jiazhen Li
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yuqian Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yue Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yanan Ruan
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China
| |
Collapse
|
4
|
Bello EO, Yang Y, Fang Y, Chai M, Jiang X, Luan Y, Wang Y, Guo Y, Wu XY, Cheng X, Wu XX. P1 of turnip mosaic virus interacts with NOD19 for vigorous infection. Front Microbiol 2023; 14:1216950. [PMID: 37426031 PMCID: PMC10326430 DOI: 10.3389/fmicb.2023.1216950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
P1 protein, the most divergent protein of virus members in the genus Potyvirus of the family Potyviridae, is required for robust infection and host adaptation. However, how P1 affects viral proliferation is still largely elusive. In this work, a total number of eight potential P1-interacting Arabidopsis proteins were identified by the yeast-two-hybrid screening using the turnip mosaic virus (TuMV)-encoded P1 protein as the bait. Among which, the stress upregulated NODULIN 19 (NOD19) was selected for further characterization. The bimolecular fluorescent complementation assay confirmed the interaction between TuMV P1 and NOD19. Expression profile, structure, and subcellular localization analyses showed that NOD19 is a membrane-associated protein expressed mainly in plant aerial parts. Viral infectivity assay showed that the infection of turnip mosaic virus and soybean mosaic virus was attenuated in the null mutant of Arabidopsis NOD19 and NOD19-knockdown soybean seedlings, respectively. Together, these data indicate that NOD19 is a P1-interacting host factor required for robust infection.
Collapse
Affiliation(s)
- Esther O. Bello
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yingshuai Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Fang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mengzhu Chai
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Jiang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yameng Luan
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuting Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yating Guo
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Yun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Zhao T, Zhang Y, Wang F, Zhang B, Chen Q, Liu L, Yan L, Yang Y, Meng Q, Huang J, Zhang M, Lin J, Qin J. Transcriptome mapping related genes encoding PR1 protein involved in necrotic symptoms to soybean mosaic virus infection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:7. [PMID: 37313127 PMCID: PMC10248650 DOI: 10.1007/s11032-022-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/24/2022] [Indexed: 06/15/2023]
Abstract
Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01351-3.
Collapse
Affiliation(s)
- Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yuhang Zhang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, 510006 Guangzhou, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061 USA
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yue Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Qingmin Meng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jinan Huang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| |
Collapse
|
7
|
Widyasari K, Bwalya J, Kim K. Binding immunoglobulin 2 functions as a proviral factor for potyvirus infections in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:179-187. [PMID: 36416097 PMCID: PMC9831281 DOI: 10.1111/mpp.13284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana benthamiana induces significant up-regulation of the genes that encode the HSP70 family, including binding immunoglobulin protein 2 (BiP2). Three up-regulated genes were knocked down and infection assays with these knockdown lines demonstrated the importance of the BiP2 gene for potyvirus infection but not for infection by the other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfiltration. Interestingly, following inoculation with either soybean mosaic virus (SMV) or pepper mottle virus (PepMoV) co-expressing green fluorescent protein (GFP), neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown line. Subsequent reverse transcription-quantitative PCR analysis demonstrated that knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA accumulation but not PVX or CMV RNA accumulation. Further yeast two-hybrid and co-immunoprecipitation analyses validated the interaction between BiP2 and nuclear inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 as a proviral host factor necessary for potyvirus infection. The interaction between BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, but further studies are needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - John Bwalya
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Kook‐Hyung Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
8
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
9
|
Overexpression of a Cinnamyl Alcohol Dehydrogenase-Coding Gene, GsCAD1, from Wild Soybean Enhances Resistance to Soybean Mosaic Virus. Int J Mol Sci 2022; 23:ijms232315206. [PMID: 36499529 PMCID: PMC9740156 DOI: 10.3390/ijms232315206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV) is the most prevalent soybean viral disease in the world. As a critical enzyme in the secondary metabolism of plants, especially in lignin synthesis, cinnamyl alcohol dehydrogenase (CAD) is widely involved in plant growth and development, and in defense against pathogen infestation. Here, we performed RNAseq-based transcriptome analyses of a highly SMV-resistant accession (BYO-15) of wild soybean (Glycine soja) and a SMV-susceptible soybean cultivar (Williams 82), also sequenced together with a resistant plant and a susceptible plant of their hybrid descendants at the F3 generation at 7 and 14 days post-inoculation with SMV. We found that the expression of GsCAD1 (from G. soja) was significantly up-regulated in the wild soybean and the resistant F3 plant, while the GmCAD1 from the cultivated soybean (G. max) did not show a significant and persistent induction in the soybean cultivar and the susceptible F3 plant, suggesting that GsCAD1 might play an important role in SMV resistance. We cloned GsCAD1 and overexpressed it in the SMV-susceptible cultivar Williams 82, and we found that two independent GsCAD1-overexpression (OE) lines showed significantly enhanced SMV resistance compared with the non-transformed wild-type (WT) control. Intriguingly, the lignin contents in both OE lines were higher than the WT control. Further liquid chromatography (HPLC) analysis showed that the contents of salicylic acid (SA) were significantly more improved in the OE lines than that of the wild-type (WT), coinciding with the up-regulated expression of an SA marker gene. Finally, we observed that GsCAD1-overexpression affected the accumulation of SMV in leaves. Collectively, our results suggest that GsCAD1 enhances resistance to SMV in soybeans, most likely by affecting the contents of lignin and SA.
Collapse
|
10
|
Fang M, Yu J, Kwak HR, Kim KH. Identification of viral genes involved in pepper mottle virus replication and symptom development in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1048074. [PMID: 36388582 PMCID: PMC9650420 DOI: 10.3389/fpls.2022.1048074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pepper mottle virus (PepMoV) infects primarily Capsicum species, including pepper and bell pepper which are important vegetable and spice crops in Korea. We have previously collected 13 PepMoV isolates from nine regions comprising five provinces, causing different symptoms on inoculated indicator host plants in Korea. To further identify the responsible symptom determinant(s) and explore viral protein functions of PepMoV, two out of 13 isolates, including 134 and 205136, were used in this study. Isolate 134 causes necrosis and yellowing, while 205136 causes severe mottle and yellowing symptoms on Nicotiana benthamiana. All chimeric and site-directed mutants contain the PepMoV 134 genome as a backbone with specific regions switched for those from counterparts of PepMoV 205136. Effects of all mutants compared with 134 after inoculation onto N. benthamiana by agroinfiltration. Results from our study provide direct evidence that the helper component-proteinase (HC-Pro) and the nuclear inclusion protein b (NIb)-coat protein (CP) regions are involved in virus accumulation and symptom determinants. In addition, we mapped to amino acid residues tyrosine, glycine, and leucine at position 360, 385, and 527, respectively, in the HC-Pro region participate in faster viral accumulation or movement in the plant. The residue valine at position 2773 of NIb plays an essential role in isolate 134 symptom development. As part of this study, we seek to gain insight into viral factors involved in the PepMoV infection cycle and a better understanding of plant-virus interactions. These findings complement the insufficiency of the gene function study of the PepMoV virus and provide a novel perspective for the protein function study of the Potyvirus.
Collapse
Affiliation(s)
- Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|