1
|
Lin M, Bacher H, Bourgault R, Qiao P, Matschi S, Vasquez MF, Mohammadi M, van Boerdonk S, Scanlon MJ, Smith LG, Molina I, Gore MA. Integrative multi-omic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves. G3 (BETHESDA, MD.) 2024; 14:jkae241. [PMID: 39387497 PMCID: PMC11631437 DOI: 10.1093/g3journal/jkae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Studying the genetic basis of leaf wax composition and its correlation with leaf cuticular conductance (gc) is crucial for improving crop productivity. The leaf cuticle, which comprises a cutin matrix and various waxes, functions as an extracellular hydrophobic layer, protecting against water loss upon stomatal closure. To address the limited understanding of genes associated with the natural variation of adult leaf cuticular waxes and their connection to gc, we conducted statistical genetic analyses using leaf transcriptomic, metabolomic, and physiological data sets collected from a maize (Zea mays L.) panel of ∼300 inbred lines. Through a random forest analysis with 60 cuticular wax traits, it was shown that high molecular weight wax esters play an important role in predicting gc. Integrating results from genome-wide and transcriptome-wide studies (GWAS and TWAS) via a Fisher's combined test revealed 231 candidate genes detected by all three association tests. Among these, 11 genes exhibit known or predicted roles in cuticle-related processes. Throughout the genome, multiple hotspots consisting of GWAS signals for several traits from one or more wax classes were discovered, identifying four additional plausible candidate genes and providing insights into the genetic basis of correlated wax traits. Establishing a partially shared genetic architecture, we identified 35 genes for both gc and at least one wax trait, with four considered plausible candidates. Our study enhances the understanding of how adult leaf cuticle wax composition relates to gc and implicates both known and novel candidate genes as potential targets for optimizing productivity in maize.
Collapse
Affiliation(s)
- Meng Lin
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Harel Bacher
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Pengfei Qiao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Susanne Matschi
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Miguel F Vasquez
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc Mohammadi
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Sarah van Boerdonk
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laurie G Smith
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Huang H, Wang Y, Yang P, Zhao H, Jenks MA, Lü S, Yang X. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1619-1634. [PMID: 38456566 DOI: 10.1111/tpj.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
3
|
Zhang Y, Qin Y, Li D, Wang W, Gao X, Hao C, Feng H, Wang Y, Li T. Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:11. [PMID: 36658295 DOI: 10.1007/s00122-023-04287-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yao Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dongxiao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China
| |
Collapse
|