1
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Yin Y, Wang D, Wang H, Sun Y, Yin C, Li J, Ye J. Development and application of sugarcane streak mosaic virus vectors. Virology 2024; 593:110028. [PMID: 38394980 DOI: 10.1016/j.virol.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Sugarcane streak mosaic virus (SCSMV) is one of the major pathogens of sugarcane in the world. Molecular studies and disease management of SCSMV are hindered by the lack of efficient infectious clones. In this study, we successfully constructed Agrobacterium infiltration based infectious clone of SCSMV with different variants. Infectious clones of wild type SCSMV could efficiently infect Nicotiana benthamiana and sugarcane plants resulting in streak and mosaic symptoms on systemic leaves which were further confirmed with RT-PCR and serological assays. SCSMV variants of less adenylation displayed attenuated pathogenicity on N.benthamiana. SCSMV-based recombinant heterologous EGFP protein vector was also developed. The EGFP-tagged recombinant SCSMV could highly expressed in vegetative organs including roots. These infectious clones of SCSMV could be further developed for platform tools for both biotechnological studies and management of SCSMV disease.
Collapse
Affiliation(s)
- Yuteng Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cece Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, 661699, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Zhang X, Wang D, Zhao P, Sun Y, Fang RX, Ye J. Near-infrared light and PIF4 promote plant antiviral defense by enhancing RNA interference. PLANT COMMUNICATIONS 2024; 5:100644. [PMID: 37393430 PMCID: PMC10811336 DOI: 10.1016/j.xplc.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
The molecular mechanism underlying phototherapy and light treatment, which utilize various wavelength spectra of light, including near-infrared (NIR), to cure human and plant diseases, is obscure. Here we revealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-activated RNA interference (RNAi) in plants. PIF4, a central transcription factor involved in light signaling, accumulates to high levels under NIR light in plants. PIF4 directly induces the transcription of two essential components of RNAi, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and ARGONAUTE 1 (AGO1), which play important roles in resistance to both DNA and RNA viruses. Moreover, the pathogenic determinant βC1 protein, which is evolutionarily conserved and encoded by betasatellites, interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization. These findings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the exploration of NIR antiviral treatment.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Chen YJ, Catto MA, Pandey S, Leal-Bertioli S, Abney M, Hunt BG, Bag S, Culbreath A, Srinivasan R. Characterization of gene expression patterns in response to an orthotospovirus infection between two diploid peanut species and their hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1270531. [PMID: 38034554 PMCID: PMC10683084 DOI: 10.3389/fpls.2023.1270531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Michael A. Catto
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Soraya Leal-Bertioli
- Plant Pathology Department, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Mark Abney
- Entomology Department, University of Georgia, Tifton, GA, United States
| | - Brendan G. Hunt
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Bag
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | | |
Collapse
|
6
|
Lee HY, Choi J, Kang M, Lee JH, Kim MS, Choi D. Protein stability governed by α1-2 helices in Pvr4 is essential for localization and cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:510-523. [PMID: 37433739 DOI: 10.1111/tpj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Plant nucleotide-binding domain leucine-rich-repeat receptor (NLR) confers disease resistance to various pathogens by recognizing effectors derived from the pathogen. Previous studies have shown that overexpression of the CC domain in several NLRs triggers cell death, implying that the CC domain plays an important role as a signaling module. However, how CC domain transduces immune signals remains largely unknown. A Potyvirus-resistant NLR protein, Pvr4, possesses a CC domain (CCPvr4 ) that induces cell death upon transient overexpression in Nicotiana benthamiana. In this study, loss-of-function mutants were generated by error-prone PCR-based random mutagenesis to understand the molecular mechanisms underlying CCPvr4 -mediated cell death. Cell biology and biochemical studies revealed that M16 and Q52 in the α1 and α2 helices, respectively, are crucial for protein stability, and mutation of these residues disrupts localization to the plasma membrane and oligomerization activity. The increase of the protein stability of these mutants by tagging a green fluorescent protein (GFP) variant led to restoration of cell death-inducing activity and plasma membrane localization. Another mutant, I7E in the very N-terminal region, lost cell death-inducing activity by weakening the interaction with plasma membrane H+ -ATPase compared to CCPvr4 , although the protein remained in the plasma membrane. Moreover, most of the mutated residues are on the outer surface of the funnel shape in the predicted pentameric CCPvr4 , implying that the disordered N-terminal region plays a crucial role in association with PMA as well as targeting to the plasma membrane. This work could provide insights into the molecular mechanisms of cell death induced by NLR immune receptors.
Collapse
Affiliation(s)
- Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minji Kang
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|