1
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|