1
|
Luo B, Sun H, Zhang L, Chen F, Wu K. Advances in the tea plants phenotyping using hyperspectral imaging technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1442225. [PMID: 39148615 PMCID: PMC11324491 DOI: 10.3389/fpls.2024.1442225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Rapid detection of plant phenotypic traits is crucial for plant breeding and cultivation. Traditional measurement methods are carried out by rich-experienced agronomists, which are time-consuming and labor-intensive. However, with the increasing demand for rapid and high-throughput testing in tea plants traits, digital breeding and smart cultivation of tea plants rely heavily on precise plant phenotypic trait measurement techniques, among which hyperspectral imaging (HSI) technology stands out for its ability to provide real-time and rich-information. In this paper, we provide a comprehensive overview of the principles of hyperspectral imaging technology, the processing methods of cubic data, and relevant algorithms in tea plant phenomics, reviewing the progress of applying hyperspectral imaging technology to obtain information on tea plant phenotypes, growth conditions, and quality indicators under environmental stress. Lastly, we discuss the challenges faced by HSI technology in the detection of tea plant phenotypic traits from different perspectives, propose possible solutions, and envision the potential development prospects of HSI technology in the digital breeding and smart cultivation of tea plants. This review aims to provide theoretical and technical support for the application of HSI technology in detecting tea plant phenotypic information, further promoting the trend of developing high quality and high yield tea leaves.
Collapse
Affiliation(s)
- Baidong Luo
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Hongwei Sun
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Leilei Zhang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Fengnong Chen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Kaihua Wu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Shanks CM, Rothkegel K, Brooks MD, Cheng CY, Alvarez JM, Ruffel S, Krouk G, Gutiérrez RA, Coruzzi GM. Nitrogen sensing and regulatory networks: it's about time and space. THE PLANT CELL 2024; 36:1482-1503. [PMID: 38366121 PMCID: PMC11062454 DOI: 10.1093/plcell/koae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Rothkegel
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Chia-Yi Cheng
- Department of Life Science, National Taiwan University, Taipei 10663, Taiwan
| | - José M Alvarez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Rodrigo A Gutiérrez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Dinish US, Teng MTJ, Xinhui VT, Dev K, Tan JJ, Koh SS, Urano D, Olivo M. Miniaturized Vis-NIR handheld spectrometer for non-invasive pigment quantification in agritech applications. Sci Rep 2023; 13:9524. [PMID: 37308523 DOI: 10.1038/s41598-023-36220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Advanced precision agriculture requires the objective measurement of the structural and functional properties of plants. Biochemical profiles in leaves can differ depending on plant growing conditions. By quantitatively detecting these changes, farm production processes can be optimized to achieve high-yield, high-quality, and nutrient dense agricultural products. To enable the rapid and non-destructive detection on site, this study demonstrates the development of a new custom-designed portable handheld Vis-NIR spectrometer that collects leaf reflectance spectra, wirelessly transfers the spectral data through Bluetooth, and provides both raw spectral data and processed information. The spectrometer has two preprogramed methods: anthocyanin and chlorophyll quantification. Anthocyanin content of red and green lettuce estimated with the new spectrometer showed an excellent correlation coefficient of 0.84 with those determined by a destructive gold standard biochemical method. The differences in chlorophyll content were measured using leaf senescence as a case study. Chlorophyll Index calculated with the handheld spectrometer gradually decreased with leaf age as chlorophyll degrades during the process of senescence. The estimated chlorophyll values were highly correlated with those obtained from a commercial fluorescence-based chlorophyll meter with a correlation coefficient of 0.77. The developed portable handheld Vis-NIR spectrometer could be a simple, cost-effective, and easy to operate tool that can be used to non-invasively monitor plant pigment and nutrient content efficiently.
Collapse
Affiliation(s)
- U S Dinish
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
| | - Mark Teo Ju Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Valerie Teo Xinhui
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Kapil Dev
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Malini Olivo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
4
|
Whatley CR, Wijewardane NK, Bheemanahalli R, Reddy KR, Lu Y. Effects of fine grinding on mid-infrared spectroscopic analysis of plant leaf nutrient content. Sci Rep 2023; 13:6314. [PMID: 37072478 PMCID: PMC10113243 DOI: 10.1038/s41598-023-33558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Fourier transform mid infrared (FT-MIR) spectroscopy combined with modeling techniques has been studied as a useful tool for multivariate chemical analysis in agricultural research. A drawback of this method is the sample preparation requirement, in which samples must be dried and fine ground for accurate model calibrations. For research involving large sample sets, this may dramatically increase the time and cost of analysis. This study investigates the effect of fine grinding on model performance using leaf tissue from a variety of crop species. Dried leaf samples (N = 300) from various environmental conditions were obtained with data on 11 nutrients measured using chemical methods. The samples were scanned with attenuated total reflectance (ATR) and diffuse reflectance (DRIFT) FT-MIR techniques. Scanning was repeated after fine grinding for 2, 5, and 10 min. The spectra were analyzed for the 11 nutrients using partial least squares regression with a 75%/25% split for calibration and validation and repeated for 50 iterations. All analytes except for boron, iron, and zinc were well-modeled (average R2 > 0.7), with higher R2 values on ATR spectra. The 5 min level of fine grinding was found to be most optimal considering overall model performance and sample preparation time.
Collapse
Affiliation(s)
- Caleb R Whatley
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nuwan K Wijewardane
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Yuzhen Lu
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 44824, USA
| |
Collapse
|