1
|
Liu YT, Yan BF, Cai X, Zheng HX, Qiu RL, Tang YT. Foliar-applied zinc promotes cadmium allocation from leaf surfaces to grains in rice. J Environ Sci (China) 2025; 151:582-593. [PMID: 39481964 DOI: 10.1016/j.jes.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024]
Abstract
The accumulation of Cd by rice poses significant health risks. Foliar fertilization with Zn can reduce grain Cd contents in rice grown in Cd-contaminated soils. However, atmospheric deposition on leaves is another vector of Cd contamination, and it remains unclear how Zn application affects the allocation of such Cd. We conducted an experiment where the flag leaves of rice plants were treated with solutions with various Zn concentrations and a constant Cd concentration. The 111Cd stable isotope was used to trace the flux of foliar-applied Cd. Higher levels of foliar-applied Zn enhanced Cd efflux and grain allocation. This is attributed to limited sequestration of foliar-applied Cd in the leaf cell symplasm and increased Cd desorption from leaf cell walls when a high Zn2+ concentration occurs in the apoplast. Nonionic Zn oxide nanoparticles mitigated these effects. Additionally, the expressions of OsLCT1 and OsZIP7 in flag leaves and OsHMA2 and OsZIP7 in the uppermost nodes were upregulated under high-Zn2+ treatment, which may facilitate Cd phloem loading and grain allocation. Caution is advised in using foliar Zn in areas with high atmospheric Cd due to potential grain-contamination risks.
Collapse
Affiliation(s)
- Ya-Ting Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo-Fang Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li Y, Sun R, Lin G, Sun P, Shi X, Li Y, Gao Y, Zhao J. Mitigating Mercury Accumulation and Enhancing Methylmercury Degradation in Rice: Insights from Zinc-Mercury Antagonism at Molecular Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25895-25904. [PMID: 39508478 DOI: 10.1021/acs.jafc.4c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Zn as an essential element has the potential to protect against mercury (Hg) toxicity in rice. However, the antagonistic effects between Zn and Hg in rice and their mechanisms remain unknown. This study proposed a promising strategy for Zn application to mitigate Hg accumulation and toxicity in rice and revealed the underlying molecular mechanisms. The findings revealed that Zn supplementation significantly reduced the uptake and transportation of both IHg and MeHg in rice, thereby alleviating Hg phytotoxicity. In particular, Zn profoundly mitigated Hg-induced oxidative damage to rice, which was attributed to the redistribution of Hg and Zn in the root and Zn competing for binding sites on glutathione. The co-binding of Zn2+ and HgCH3+ within the same active sites of Zn transporters can promote the transfer of regions with a high charge density distribution at the highest occupied molecular orbital (HOMO) level. This process facilitates proton attack on the Hg-C bond, thereby enhancing MeHg demethylation in rice. By elucidating the molecular mechanisms of Zn, IHg, and MeHg interactions in rice, this study offers new insights for developing efficient strategies to mitigate Hg risks while boosting the Zn content in crops, thereby fortifying food safety.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Ruiyang Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Peipei Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xueqian Shi
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yufeng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
3
|
Li MZ, Hu DW, Liu XQ, Zhang R, Liu H, Tang Z, Zhao FJ, Huang XY. The OsZIP2 transporter is involved in root-to-shoot translocation and intervascular transfer of cadmium in rice. PLANT, CELL & ENVIRONMENT 2024; 47:3865-3881. [PMID: 38828861 DOI: 10.1111/pce.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Cadmium (Cd) is a toxic metal that poses serious threats to human health. Rice is a major source of dietary Cd but how rice plants transport Cd to the grain is not fully understood. Here, we characterize the function of the ZIP (ZRT, IRT-like protein) family protein, OsZIP2, in the root-to-shoot translocation of Cd and intervascular transfer of Cd in nodes. OsZIP2 is localized at the plasma membrane and exhibited Cd2+ transport activity when heterologously expressed in yeast. OsZIP2 is strongly expressed in xylem parenchyma cells in roots and in enlarged vascular bundles in nodes. Knockout of OsZIP2 significantly enhanced root-to-shoot translocation of Cd and alleviated the inhibition of root elongation by excess Cd stress; whereas overexpression of OsZIP2 decreased Cd translocation to shoots and resulted in Cd sensitivity. Knockout of OsZIP2 increased Cd allocation to the flag leaf but decreased Cd allocation to the panicle and grain. We further reveal that the variation of OsZIP2 expression level contributes to grain Cd concentration among rice germplasms. Our results demonstrate that OsZIP2 functions in root-to-shoot translocation of Cd in roots and intervascular transfer of Cd in nodes, which can be used for breeding low Cd rice varieties.
Collapse
Affiliation(s)
- Meng-Zhen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
5
|
Zhong S, Li X, Fang L, Bai J, Gao R, Huang Y, Huang Y, Liu Y, Liu C, Yin H, Liu T, Huang F, Li F. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12467-12476. [PMID: 38966939 DOI: 10.1021/acs.est.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.
Collapse
Affiliation(s)
- Songxiong Zhong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jianghao Bai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ruichuan Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuhui Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
7
|
Wan Y, Liu J, Zhuang Z, Wang Q, Li H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. TOXICS 2024; 12:63. [PMID: 38251018 PMCID: PMC10819638 DOI: 10.3390/toxics12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Soil heavy metal pollution is a global environmental challenge, posing significant threats to eco-environment, agricultural development, and human health. In recent years, advanced and effective remediation strategies for heavy metal-contaminated soils have developed rapidly, and a systematical summarization of this progress is important. In this review paper, first, the anthropogenic sources of heavy metals in agricultural soils, including atmospheric deposition, animal manure, mineral fertilizers, and pesticides, are summarized. Second, the accumulation of heavy metals in crops as influenced by the plant characteristics and soil factors is analyzed. Then, the reducing strategies, including low-metal cultivar selection/breeding, physiological blocking, water management, and soil amendment are evaluated. Finally, the phytoremediation in terms of remediation efficiency and applicability is discussed. Therefore, this review provides helpful guidance for better selection and development of the control/remediation technologies for heavy metal-contaminated agricultural soils.
Collapse
Affiliation(s)
| | | | | | | | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.W.); (J.L.); (Z.Z.); (Q.W.)
| |
Collapse
|