1
|
Yu Y, Yang J, Zhang J, Rieseberg LH, Zhao J. Genomic Insights into Disease Resistance in Sunflower ( Helianthus annuus): Identifying Key Regions and Candidate Genes for Verticillium dahliae Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2582. [PMID: 39339557 PMCID: PMC11434647 DOI: 10.3390/plants13182582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Sunflower (Helianthus annuus) is a globally significant field crop, and disease resistance is crucial for ensuring yield stability and crop quality. Verticillium dahliae is a notorious soilborne pathogen that causes Verticillium Wilt (VW) and threatens sunflower production worldwide. In this study, we conducted a comprehensive assessment of sunflower resistance to V. dahliae across 231 sunflower cultivar lines, from the Sunflower Association Mapping (SAM) population. We employed EMMAX and ridge regression best linear unbiased prediction (rrBLUP) and identified 148 quantitative trait loci (QTLs) and 23 putative genes associated with V. dahliae resistance, including receptor like kinases, cell wall modification, transcriptional regulation, plant stress signalling and defense regulation genes. Our enrichment and quantitative real-time PCR validation results highlight the importance of membrane vesicle trafficking in the sunflower immune system for efficient signaling and defense upon activation by V. dahliae. This study also reveals the polygenic architecture of V. dahliae resistance in sunflowers and provides insights for breeding sunflower cultivars resistant to VW. This research contributes to ongoing efforts to enhance crop resilience and reduce yield losses due to VW, ultimately benefiting sunflower growers and the agricultural sector.
Collapse
Affiliation(s)
- Yue Yu
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
2
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant Breeding, Wageningen University & Research, 6700 HB Wageningen, The Netherlands
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily L Dittmar
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|