1
|
Claudel C, Loiseau O, Silvestro D, Lev-Yadun S, Antonelli A. Patterns and drivers of heat production in the plant genus Amorphophallus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:874-894. [PMID: 37340521 DOI: 10.1111/tpj.16343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Thermogenesis - the ability to generate metabolic heat - is much more common in animals than in plants, but it has been documented in several plant families, most prominently the Araceae. Metabolic heat is produced in floral organs during the flowering time (anthesis), with the hypothesised primary functions being to increase scent volatilisation for pollinator attraction, and/or to provide a heat reward for invertebrate pollinators. Despite in-depth studies on the thermogenesis of single species, no attempts have yet been made to examine plant thermogenesis across an entire clade. Here, we apply time-series clustering algorithms to 119 measurements of the full thermogenic patterns in inflorescences of 80 Amorphophallus species. We infer a new time-calibrated phylogeny of this genus and use phylogenetic comparative methods to investigate the evolutionary determinants of thermogenesis. We find striking phenotypic variation across the phylogeny, with heat production in multiple clades reaching up to 15°C, and in one case 21.7°C above ambient temperature. Our results show that the thermogenic capacity is phylogenetically conserved and is also associated with inflorescence thickness. Our study paves the way for further investigations of the eco-evolutionary benefits of thermogenesis in plants.
Collapse
Affiliation(s)
- Cyrille Claudel
- Institute for Plant Science and Microbiology, Department of Biology, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Oriane Loiseau
- School of GeoSciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Daniele Silvestro
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30, Gothenburg, Sweden
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006, Israel
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
2
|
Leaf Mesophyll Mitochondrial Polarization Assessment in Arabidopsis thaliana. Methods Protoc 2021; 4:mps4040084. [PMID: 34842790 PMCID: PMC8628959 DOI: 10.3390/mps4040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.
Collapse
|
3
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
4
|
Zhang ZW, Wu ZL, Feng LY, Dong LH, Song AJ, Yuan M, Chen YE, Zeng J, Chen GD, Yuan S. Mg-Protoporphyrin IX Signals Enhance Plant's Tolerance to Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1545. [PMID: 27803706 PMCID: PMC5068135 DOI: 10.3389/fpls.2016.01545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/03/2016] [Indexed: 05/23/2023]
Abstract
The relationship between Mg-protoporphyrin IX (Mg-Proto IX) signals and plant's tolerance to cold stress is investigated. Arabidopsis seedlings grown for 3 weeks were pretreated with 2 mM glutamate (Glu) and 2 mM MgCl2 for 48 h at room temperature to induce Mg-Proto IX accumulation. Then cold stress was performed at 4°C for additional 72 h. Glu + MgCl2 pre-treatments alleviated the subsequent cold stress significantly by rising the leaf temperature through inducing Mg-Proto IX signals. The protective role of Glu + MgCl2 treatment was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling, and cyanide-resistant respiration. And the enhancement of cold-responsive gene expression was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling and ABA signaling, but not in the mutant of cyanide-resistant respiration. Cold stress promoted cyanide-resistant respiration and leaf total respiration exponentially, which could be further induced by the Glu + MgCl2 treatment. Mg-Proto IX signals also activate antioxidant enzymes and increase non-enzymatic antioxidants [glutathione but not ascorbic acid (AsA)] to maintain redox equilibrium during the cold stress.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Li Wu
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, College of Life Science and Food Engineering, Yibin UniversityYibin, China
| | - Ling-Yang Feng
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Li-Hua Dong
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | - An-Jun Song
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
5
|
Wang R, Zhang Z. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae. Commun Integr Biol 2016; 8:e992746. [PMID: 26844867 PMCID: PMC4594551 DOI: 10.4161/19420889.2014.992746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Floral thermogenesis plays a crucial role in pollination biology, especially in plant–pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant–pollinator interactions and the regulatory mechanisms in thermogenic plants.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Laboratory for Tree Breeding; Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants; Ministry of Education; College of Biological Sciences and Biotechnology; Beijing Forestry University ; Beijing, PR China
| | - Zhixiang Zhang
- Lab of Systematic Evolution and Biogeography of Woody Plants; College of Nature Conservation; Beijing Forestry University ; Beijing, PR China
| |
Collapse
|
6
|
Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids. Naturwissenschaften 2014; 101:623-35. [PMID: 24925357 DOI: 10.1007/s00114-014-1197-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.
Collapse
|
7
|
Wang R, Xu S, Liu X, Zhang Y, Wang J, Zhang Z. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS One 2014; 9:e99356. [PMID: 24922537 PMCID: PMC4055676 DOI: 10.1371/journal.pone.0099356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Sai Xu
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
- School of Environment, Tsinghua University, Beijing, China
| | - Xiangyu Liu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University,Beijing, China
| | - Yiyuan Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Jianzhong Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Zhixiang Zhang
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University,Beijing, China
- * E-mail:
| |
Collapse
|
8
|
Ito-Inaba Y, Hida Y, Matsumura H, Masuko H, Yazu F, Terauchi R, Watanabe M, Inaba T. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. PLANT, CELL & ENVIRONMENT 2012; 35:554-566. [PMID: 21955303 DOI: 10.1111/j.1365-3040.2011.02435.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.
Collapse
Affiliation(s)
- Yasuko Ito-Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Urru I, Stensmyr MC, Hansson BS. Pollination by brood-site deception. PHYTOCHEMISTRY 2011; 72:1655-66. [PMID: 21419464 DOI: 10.1016/j.phytochem.2011.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 05/11/2023]
Abstract
Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation.
Collapse
Affiliation(s)
- Isabella Urru
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | |
Collapse
|
10
|
Miller RE, Grant NM, Giles L, Ribas-Carbo M, Berry JA, Watling JR, Robinson SA. In the heat of the night--alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. THE NEW PHYTOLOGIST 2011; 189:1013-1026. [PMID: 21118259 DOI: 10.1111/j.1469-8137.2010.03547.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Philodendron bipinnatifidum inflorescences heat up to 42 °C and thermoregulate. We investigated whether they generate heat via the cytochrome oxidase pathway uncoupled by uncoupling proteins (pUCPs), or the alternative oxidase (AOX). • Contribution of AOX and pUCPs to heating in fertile (FM) and sterile (SM) male florets was determined using a combination of oxygen isotope discrimination, protein and substrate analyses. • Both FM and SM florets thermoregulated independently for up to 30 h ex planta. In both floret types, AOX contributed > 90% of respiratory flux during peak heating. The AOX protein increased fivefold with the onset of thermogenesis in both floret types, whereas pUCP remained low throughout development. These data indicate that AOX is primarily responsible for heating, despite FM and SM florets potentially using different substrates, carbohydrates or lipids, respectively. Measurements of discrimination between O₂ isotopes in strongly respiring SM florets were affected by diffusion; however, this diffusional limitation was largely overcome using elevated O₂. • The first in vivo respiratory flux measurements in an arum show AOX contributes the bulk of heating in P. bipinnatifidum. Fine-scale regulation of AOX activity is post-translational. We also demonstrate that elevated O₂ can aid measurement of respiratory pathway fluxes in dense tissues.
Collapse
Affiliation(s)
- Rebecca E Miller
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole M Grant
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Larry Giles
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama St, Stanford, CA 94305, USA
| | - Miquel Ribas-Carbo
- Departament de Biologia, Universitat de les Illes Balears, Unitat de Fisiologia Vegetal, Illes Balears, Spain
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama St, Stanford, CA 94305, USA
| | - Jennifer R Watling
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sharon A Robinson
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Zhu Y, Lu J, Wang J, Chen F, Leng F, Li H. Regulation of thermogenesis in plants: the interaction of alternative oxidase and plant uncoupling mitochondrial protein. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:7-13. [PMID: 21205176 DOI: 10.1111/j.1744-7909.2010.01004.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Thermogenesis is a process of heat production in living organisms. It is rare in plants, but it does occur in some species of angiosperm. The heat is generated via plant mitochondrial respiration. As possible involvement in thermogenesis of mitochondrial factors, alternative oxidases (AOXs) and plant uncoupling mitochondrial proteins (PUMPs) have been well studied. AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria. They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient (ΔμH+) as heat, respectively. AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants. AOXs have five isoforms, while PUMPs have six. Both AOXs and PUMPs are encoded by small nuclear multigene families. Multiple isoforms are expressed in different tissues or organs. Extensive studies have been done in the area of thermogenesis in higher plants. In this review, we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.
Collapse
Affiliation(s)
- Yan Zhu
- MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
12
|
Seymour RS. Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. PLANT, CELL & ENVIRONMENT 2010; 33:1474-1485. [PMID: 20545882 DOI: 10.1111/j.1365-3040.2010.02190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.
Collapse
Affiliation(s)
- Roger S Seymour
- Ecology and Evolutionary Biology, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Müller GL, Drincovich MF, Andreo CS, Lara MV. Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3675-88. [PMID: 20591899 DOI: 10.1093/jxb/erq187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the physiological and economical relevance of flowers is recognized, their primary metabolism during development has not been characterized, especially combining protein, transcript, and activity levels of the different enzymes involved. In this work, the functional characterization of the photosynthetic apparatus, pigment profiles, and the main primary metabolic pathways were analysed in tobacco sepals and petals at different developmental stages. The results indicate that the corolla photosynthetic apparatus is functional and capable of fixing CO(2); with its photosynthetic activity mainly involved in pigment biosynthesis. The particular pattern of expression, across the tobacco flower lifespan, of several proteins involved in respiration and primary metabolism, indicate that petal carbon metabolism is highest at the anthesis stage; while some enzymes are activated at the later stages, along with senescence. The first signs of corolla senescence in attached flowers are observed after anthesis; however, molecular data suggest that senescence is already onset at this stage. Feeding experiments to detached flowers at anthesis indicate that sugars, but not photosynthetic activity of the corolla, are capable of delaying the senescence process. On the other hand, photosynthetic activity and CO(2) fixation is active in sepals, where high expression levels of particular enzymes were detected. Sepals remained green and did not show signs of senescence in all the flower developmental stages analysed. Overall, the data presented contribute to an understanding of the metabolic processes operating during tobacco flower development, and identify key enzymes involved in the different stages.
Collapse
Affiliation(s)
- Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | | | | | | |
Collapse
|
14
|
Seymour RS, Lindshau G, Ito K. Thermal clamping of temperature-regulating flowers reveals the precision and limits of the biochemical regulatory mechanism. PLANTA 2010; 231:1291-1300. [PMID: 20221632 DOI: 10.1007/s00425-010-1128-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/11/2010] [Indexed: 05/28/2023]
Abstract
The flowers of several families of seed plants warm themselves when they bloom. In some species, thermogenesis is regulated, increasing the rate of respiration at lower ambient temperature (T (a)) to maintain a somewhat stable floral temperature (T (f)). The precision of this regulation is usually measured by plotting T (f) over T (a). However, such measurements are influenced by environmental conditions, including wind speed, humidity, radiation, etc. This study eliminates environmental effects by experimentally 'clamping' T (f) at constant, selected levels and then measuring stabilized respiration rate. Regulating flowers show decreasing respiration with rising T (f) (Q (10) < 1). Q (10) therefore becomes a measure of the biochemical 'precision' of temperature regulation: lower Q (10) values indicate greater sensitivity of respiration to T (f) and a narrower range of regulated temperatures. At the lower end of the regulated range, respiration is maximal, and further decreases in floral temperature cause heat production to diminish. Below a certain tissue temperature ('switching temperature'), heat loss always exceeds heat production, so thermoregulation becomes impossible. This study compared three species of thermoregulatory flowers with distinct values of precision and switching temperature. Precision was highest in Nelumbo nucifera (Q (10) = 0.16) moderate in Symplocarpus renifolius (Q (10) = 0.48) and low in Dracunculus vulgaris (Q (10) = 0.74). Switching temperatures were approximately 30, 15 and 20 degrees C, respectively. There were no relationships between precision, switching temperature or maximum respiration rate. High precision reveals a powerful inhibitory mechanism that overwhelms the tendency of temperature to increase respiration. Variability in the shape and position of the respiration-temperature curves must be accounted for in any explanation of the control of respiration in thermoregulatory flowers.
Collapse
Affiliation(s)
- Roger S Seymour
- Ecology and Evolutionary Biology, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
15
|
Seymour RS, Gibernau M, Pirintsos SA. Thermogenesis of three species of Arum from Crete. PLANT, CELL & ENVIRONMENT 2009; 32:1467-1476. [PMID: 19558404 DOI: 10.1111/j.1365-3040.2009.02015.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inflorescences of arum lilies have a three-part spadix with a scent-producing, sterile appendix above two bands of fertile male and female florets. The appendix and male florets are thermogenic, but with different temporal patterns. Heat-production was measured in Arum concinnatum, A. creticum and A. idaeum. The male florets of A. concinnatum showed a 3 d continuous episode of thermogenesis with three waves, and the appendix warmed in a single, 6 h episode. Maximum fresh-mass-specific CO(2) production rate was 0.17 micromol s(-1) g(-1) to achieve a 10.9 degrees C temperature elevation by the appendix, and 0.92 micromol s(-1) g(-1) to achieve a 4.8 degrees C elevation by male florets. Reversible, physiological temperature regulation was not evident in either tissue. Respiration increased with tissue temperatures with Q(10) values of 1.8-3.9, rather than less than 1.0 as occurs in thermoregulatory flowers. Experimental step changes in temperature of appendix and male floret tissues also failed to show thermoregulatory responses. The patterns of thermogenesis therefore appear to be fixed by the temporal sequence of blooming. Thermogenesis in the alpine species, A. creticum and A. idaeum, was significantly lower than in the lowland A. concinnatum, possibly related to difficulty in raising floral temperature in their cold and windy habitat.
Collapse
Affiliation(s)
- Roger S Seymour
- Ecology and Evolutionary Biology, University of Adelaide, Adelaide, SA, Australia.
| | | | | |
Collapse
|
16
|
Seymour RS, Maass E, Bolin JF. Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa. ANNALS OF BOTANY 2009; 104:823-32. [PMID: 19584128 PMCID: PMC2749535 DOI: 10.1093/aob/mcp168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/05/2009] [Accepted: 06/03/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments. METHODS Long-term respirometry (CO(2) production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence. KEY RESULTS For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8.3 nmol CO(2) g(-1) s(-1) in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27.5 nmol g(-1) s(-1) in the osmophores) and a slight elevation of osmophore temperature (maximum 2.8 degrees C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3.8 degrees C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4.8 nmol g(-1) s(-1) in H. africana and 10.3 nmol g(-1) s(-1) in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release. CONCLUSIONS The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct benefit to beetle pollinators.
Collapse
Affiliation(s)
- Roger S Seymour
- Ecology and Evolutionary Biology, University of Adelaide, Adelaide, 5005, Australia.
| | | | | |
Collapse
|
17
|
Ito-Inaba Y, Sato M, Masuko H, Hida Y, Toyooka K, Watanabe M, Inaba T. Developmental changes and organelle biogenesis in the reproductive organs of thermogenic skunk cabbage (Symplocarpus renifolius). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3909-22. [PMID: 19640927 PMCID: PMC2736897 DOI: 10.1093/jxb/erp226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/26/2009] [Accepted: 06/29/2009] [Indexed: 05/24/2023]
Abstract
Sex-dependent thermogenesis during reproductive organ development in the inflorescence is a characteristic feature of some of the protogynous arum species. One such plant, skunk cabbage (Symplocarpus renifolius), can produce massive heat during the female stage but not during the subsequent male stage in which the stamen completes development, the anthers dehisce, and pollen is released. Unlike other thermogenic species, skunk cabbage belongs to the bisexual flower group. Although recent studies have identified the spadix as the thermogenic organ, it remains unclear how individual tissues or intracellular structures are involved in thermogenesis. In this study, reproductive organ development and organelle biogenesis were examined during the transition from the female to the male stage. During the female stage, the stamens exhibit extensive structural changes including changes in organelle structure and density. They accumulate high levels of mitochondrial proteins, including possible thermogenic factors, alternative oxidase, and uncoupling protein. By contrast, the petals and pistils do not undergo extensive changes during the female stage. However, they contain a larger number of mitochondria than during the male stage in which they develop large cytoplasmic vacuoles. Comparison between female and male spadices suggests that mitochondrial number rather than their level of activity correlates with thermogenesis. Their spadices, even in the male, contain a larger amount of mitochondria that had greater oxygen consumption, compared with non-thermogenic plants. Taken together, our data suggest that the extensive maturation process in stamens produces massive heat through increased metabolic activities. The possible mechanisms by which petal and pistil metabolism may affect thermogenesis are also discussed.
Collapse
Affiliation(s)
- Yasuko Ito-Inaba
- Cryobiofrontier Research Center, Iwate University, Morioka 020-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|