1
|
Zakharova EV, Demyanchuk IS, Sobolev DS, Golivanov YY, Baranova EN, Khaliluev MR. Ac-DEVD-CHO (caspase-3/DEVDase inhibitor) suppresses self-incompatibility-induced programmed cell death in the pollen tubes of petunia (Petunia hybrida E. Vilm.). Cell Death Discov 2024; 10:59. [PMID: 38287001 PMCID: PMC10825214 DOI: 10.1038/s41420-024-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Programmed cell death (PCD) is relevant to many aspects in the growth and development of a plant organism. In their reproduction, many flowering plant species possess self-incompatibility (SI), that is an intraspecific reproductive barrier, which is a genetic mechanism ensuring the avoidance of inbreeding depression by preventing self-pollination. This phenomenon enhances intraspecific variation; however, SI is rather a hindrance for some fruit plant species (such as plum, cherry, and peer trees) rather than an advantage in farming. PCD is a factor of the S-RNase-based SI in Petunia hybrida E. Vilm. The growth of self-incompatible pollen tubes (PTs) is arrested with an increase in the activity of caspase-like proteases during the first hours after pollination so that all traits of PCD-plasma membrane integrity damage, DNA degradation/disintegration, and damage of PT structural organization (absence of vacuoles, turgor disturbance, and separation of cell plasma membrane from the cell wall)-are observable by the moment of PT growth arrest. We succeeded in discovering an additional cytological PCD marker, namely, the formation of ricinosomes in self-incompatible PTs at early stages of PCD. SI is removable by treating petunia stigmas with Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), an inhibitor of caspase-3/DEVDase, 2 h before a self-incompatible pollination. In this process, the level of caspase-3-like protease activity was low, DNA degradation was absent, PTs grew to the ovary, fertilization was successful, and full-fledged seeds were formed.
Collapse
Affiliation(s)
| | - Ilya Sergeevich Demyanchuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Botanicheskaya 35, Moscow, Russia
| | - Denis Sergeevich Sobolev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Botanicheskaya 35, Moscow, Russia
| | | | | | | |
Collapse
|
2
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
3
|
Cheung AY. Self-incompatibility in Papaver rhoeas: a role for ATP. THE NEW PHYTOLOGIST 2022; 236:1625-1628. [PMID: 36256463 DOI: 10.1111/nph.18505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Zhao H, Song Y, Li J, Zhang Y, Huang H, Li Q, Zhang Y, Xue Y. Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. THE NEW PHYTOLOGIST 2021; 231:1249-1264. [PMID: 33932295 PMCID: PMC8361771 DOI: 10.1111/nph.17438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 05/15/2023]
Abstract
In self-incompatible Petunia species, the pistil S-RNase acts as cytotoxin to inhibit self-pollination but is polyubiquitinated by the pollen-specific nonself S-locus F-box (SLF) proteins and subsequently degraded by the ubiquitin-proteasome system (UPS), allowing cross-pollination. However, it remains unclear how S-RNase is restricted by the UPS. Using biochemical analyses, we first show that Petunia hybrida S3 -RNase is largely ubiquitinated by K48-linked polyubiquitin chains at three regions, R I, R II and R III. R I is ubiquitinated in unpollinated, self-pollinated and cross-pollinated pistils, indicating its occurrence before PhS3 -RNase uptake into pollen tubes, whereas R II and R III are exclusively ubiquitinated in cross-pollinated pistils. Transgenic analyses showed that removal of R II ubiquitination resulted in significantly reduced seed sets from cross-pollination and that of R I and R III to a lesser extent, indicating their increased cytotoxicity. Consistent with this, the mutated R II of PhS3 -RNase resulted in a marked reduction of its degradation, whereas that of R I and R III resulted in less reduction. Taken together, we demonstrate that PhS3 -RNase R II functions as a major ubiquitination region for its destruction and R I and R III as minor ones, revealing that its cytotoxicity is primarily restricted by a stepwise UPS mechanism for cross-pollination in P. hybrida.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute of GenomicsChinese Academy of Sciences and National Centre for BioinformationBeijing100101China
- Jiangsu Co‐Innovation Centre for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009China
| |
Collapse
|
5
|
Zakharova EV, Timofeeva GV, Fateev AD, Kovaleva LV. Caspase-like proteases and the phytohormone cytokinin as determinants of S-RNAse-based self-incompatibility-induced PCD in Petunia hybrida L. PROTOPLASMA 2021; 258:573-586. [PMID: 33230626 DOI: 10.1007/s00709-020-01587-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.
Collapse
Affiliation(s)
| | - Galina V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Arseny D Fateev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Vieira J, Pimenta J, Gomes A, Laia J, Rocha S, Heitzler P, Vieira CP. The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems. Sci Rep 2021; 11:3710. [PMID: 33580108 PMCID: PMC7881130 DOI: 10.1038/s41598-021-83243-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
In Rosaceae species, two gametophytic self-incompatibility (GSI) mechanisms are described, the Prunus self-recognition system and the Maleae (Malus/Pyrus/Sorbus) non-self- recognition system. In both systems the pistil component is a S-RNase gene, but from two distinct phylogenetic lineages. The pollen component, always a F-box gene(s), in the case of Prunus is a single gene, and in Maleae there are multiple genes. Previously, the Rosa S-locus was mapped on chromosome 3, and three putative S-RNase genes were identified in the R. chinensis ‘Old Blush’ genome. Here, we show that these genes do not belong to the S-locus region. Using R. chinensis and R. multiflora genomes and a phylogenetic approach, we identified the S-RNase gene, that belongs to the Prunus S-lineage. Expression patterns support this gene as being the S-pistil. This gene is here also identified in R. moschata, R. arvensis, and R. minutifolia low coverage genomes, allowing the identification of positively selected amino acid sites, and thus, further supporting this gene as the S-RNase. Furthermore, genotype–phenotype association experiments also support this gene as the S-RNase. For the S-pollen GSI component we find evidence for multiple F-box genes, that show the expected expression pattern, and evidence for diversifying selection at the F-box genes within an S-haplotype. Thus, Rosa has a non-self-recognition system, like in Maleae species, despite the S-pistil gene belonging to the Prunus S-RNase lineage. These findings are discussed in the context of the Rosaceae GSI evolution. Knowledge on the Rosa S-locus has practical implications since genes controlling floral and other ornamental traits are in linkage disequilibrium with the S-locus.
Collapse
Affiliation(s)
- J Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - J Pimenta
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - A Gomes
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - J Laia
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - S Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - P Heitzler
- Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, UPR 2357, 67000, Strasbourg, France
| | - C P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
7
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
8
|
Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, Goldberg EE. Interaction among ploidy, breeding system and lineage diversification. THE NEW PHYTOLOGIST 2019; 224:1252-1265. [PMID: 31617595 DOI: 10.1111/nph.16184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/14/2019] [Indexed: 05/28/2023]
Abstract
If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.
Collapse
Affiliation(s)
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - William A Freyman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
9
|
Vieira J, Rocha S, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Vieira CP. Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model. FRONTIERS IN PLANT SCIENCE 2019; 10:879. [PMID: 31379893 PMCID: PMC6649718 DOI: 10.3389/fpls.2019.00879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Noé Vázquez
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [ Camellia sinensis (L.) O. Kuntze]. Int J Mol Sci 2019; 20:ijms20030539. [PMID: 30696008 PMCID: PMC6387076 DOI: 10.3390/ijms20030539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
This study explicates molecular insights commencing Self-Incompatibility (SI) and CC (cross-compatibility/fertilization) in self (SP) and cross (CP) pollinated pistils of tea. The fluorescence microscopy analysis revealed ceased/deviated pollen tubes in SP, while successful fertilization occurred in CP at 48 HAP. Global transcriptome sequencing of SP and CP pistils generated 109.7 million reads with overall 77.9% mapping rate to draft tea genome. Furthermore, concatenated de novo assembly resulted into 48,163 transcripts. Functional annotations and enrichment analysis (KEGG & GO) resulted into 3793 differentially expressed genes (DEGs). Among these, de novo and reference-based expression analysis identified 195 DEGs involved in pollen-pistil interaction. Interestingly, the presence of 182 genes [PT germination & elongation (67), S-locus (11), fertilization (43), disease resistance protein (30) and abscission (31)] in a major hub of the protein-protein interactome network suggests a complex signaling cascade commencing SI/CC. Furthermore, tissue-specific qRT-PCR analysis affirmed the localized expression of 42 DE putative key candidates in stigma-style and ovary, and suggested that LSI initiated in style and was sustained up to ovary with the active involvement of csRNS, SRKs & SKIPs during SP. Nonetheless, COBL10, RALF, FERONIA-rlk, LLG and MAPKs were possibly facilitating fertilization. The current study comprehensively unravels molecular insights of phase-specific pollen-pistil interaction during SI and fertilization, which can be utilized to enhance breeding efficiency and genetic improvement in tea.
Collapse
|
11
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
12
|
Proteomics Advances in the Understanding of Pollen-Pistil Interactions. Proteomes 2014; 2:468-484. [PMID: 28250391 PMCID: PMC5302694 DOI: 10.3390/proteomes2040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022] Open
Abstract
The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction.
Collapse
|
13
|
Liu W, Fan J, Li J, Song Y, Li Q, Zhang Y, Xue Y. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet 2014; 5:228. [PMID: 25101113 PMCID: PMC4106197 DOI: 10.3389/fgene.2014.00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCF(SLF-mediated) non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yu'e Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| |
Collapse
|
14
|
Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. PLANT & CELL PHYSIOLOGY 2014; 55:977-89. [PMID: 24503865 DOI: 10.1093/pcp/pcu031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.
Collapse
Affiliation(s)
- Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tovar-Méndez A, Kumar A, Kondo K, Ashford A, Baek YS, Welch L, Bedinger PA, McClure BA. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:727-36. [PMID: 24387692 DOI: 10.1111/tpj.12424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 05/27/2023]
Abstract
Interspecific reproductive barriers are poorly understood, but are central to the biological species concept. The pre-zygotic barriers between red- and green-fruited species in the tomato clade of the genus Solanum provide a model to better understand these barriers in plants. Compatibility usually follows the SI x SC rule: pollen from self-compatible (SC) red-fruited species is rejected on pistils of the predominantly self-incompatible (SI) green-fruited species, but the reciprocal crosses are compatible. This suggests that the interspecific reproductive barrier may be linked to the intraspecific SI mechanism. However, pollen from the SC red-fruited species is also rejected by SC accessions of green-fruited species that lack S-RNase, a key protein expressed in pistils of SI Solanum species. Thus, multiple mechanisms may contribute to the barrier between red- and green-fruited species. We tested whether an S-RNase-dependent barrier is sufficient for rejection of pollen from red-fruited species by introducing functional S-RNase, HT-A and HT-B genes from SI species into Solanum lycopersicum (cultivated tomato). We found that expressing S-RNase in combination with either HT-A or HT-B in the pistil is sufficient to cause rejection of pollen from all four red-fruited species. Thus, redundant mechanisms must operate side by side to prevent crosses between red- and green-fruited species in the clade, underlining the complexity of interspecific pollination barriers. Our results also have implications for mating system transitions. We suggest that these transitions must occur in a specific sequence, and that the transition from SI to SC also affects interspecific compatibility.
Collapse
Affiliation(s)
- Alejandro Tovar-Méndez
- Division of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Miao H, Ye Z, Teixeira da Silva JA, Qin Y, Hu G. Identifying differentially expressed genes in pollen from self-incompatible "Wuzishatangju" and self-compatible "Shatangju" mandarins. Int J Mol Sci 2013; 14:8538-55. [PMID: 23595002 PMCID: PMC3645760 DOI: 10.3390/ijms14048538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/02/2013] [Accepted: 04/07/2013] [Indexed: 02/05/2023] Open
Abstract
Self-incompatibility (SI) is one of the important factors that can result in seedless fruit in Citrus. However, the molecular mechanism of SI in Citrus is not yet clear. In this study, two suppression subtractive hybridization (SSH) libraries (forward, F and reverse, R) were constructed to isolate differentially expressed genes in pollen from "Wuzishatangju" (SI) and "Shatangju" (self-compatibility, SC) mandarins. Four hundred and sixty-eight differentially expressed cDNA clones from 2077 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of "Wuzishatangju" by regulating pollen development, kinase activity, ubiquitin pathway, pollen-pistil interaction, and calcium ion binding. Twenty five SI candidate genes were obtained, six of which displayed specific expression patterns in various organs and stages after self- and cross-pollination. The expression level of the F-box gene (H304) and S1 (F78) in the pollen of "Wuzishatangju" was 5-fold higher than that in "Shatangju" pollen. The F-box gene, S1, UBE2, UBE3, RNaseHII, and PCP were obviously up-regulated in pistils at 3 d after self-pollination of "Wuzishatangju", approximately 3-, 2-, 10-, 5-, 5-, and 2-fold higher, respectively than that at the same stage after cross-pollination of "Wuzishatangju" × "Shatangju" pistils. The potential involvement of these genes in the pollen SI reaction of "Wuzishatangju" is discussed.
Collapse
Affiliation(s)
- Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Zixing Ye
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Jaime A. Teixeira da Silva
- Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Ikenobe, Kagawa 761-0795, Japan; E-Mail:
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| |
Collapse
|
17
|
Soulard J, Qin X, Boivin N, Morse D, Cappadocia M. A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1995-2003. [PMID: 23530129 PMCID: PMC3638826 DOI: 10.1093/jxb/ert059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stylar determinant of gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is an S-RNase encoded by a multiallelic S-locus. The primary structure of S-RNases shows five conserved (C) and two hypervariable (HV) regions, the latter forming a domain implicated in S-haplotype-specific recognition of the pollen determinant to SI. All S-RNases are glycosylated at a conserved site in the C2 region, although previous studies have shown that N-linked glycans at this position are not required for S-haplotype-specific recognition and pollen rejection. Here the incompatibility phenotype of three constructs derived from an originally monoglycosylated S11-RNase of Solanum chacoense, that were designed to explore the role of the HV domain in determining pollen recognition and the role of the N-linked glycan in the C2 region, is reported. In one series of experiments, a second glycosylation site was introduced in the HVa region to test for inhibition of pollen-specific recognition. This modification does not impede pollen rejection, although analysis shows incomplete glycosylation at the new site in the HVa region. A second construct, designed to permit complete glycosylation at the HVa site by suppression of the conserved site in the C2 region, did increase the degree of site occupancy, but, again, glycosylation was incomplete. Plants expressing this construct rejected S 11 pollen and, surprisingly, also rejected S 13 pollen, thus displaying an unusual dual specificity phenotype. This construct differs from the first by the absence of the conserved C2 glycosylation site, and thus the dual specificity is observed only in the absence of the C2 glycan. A third construct, completely lacking glycosylation sites, conferred an ability to reject only S 11 pollen, disproving the hypothesis that lack of a conserved glycan would confer a universal pollen rejection phenotype to the plant.
Collapse
|
18
|
Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S, Tovar-Mèndez A, Covey PA, Dempsey LA, Randle AM, Stack SM, Rose JK, McClure B, Bedinger PA. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:265-79. [PMID: 23166371 PMCID: PMC3528032 DOI: 10.1093/jxb/ers324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although self-incompatibility (SI) in plants has been studied extensively, far less is known about interspecific reproductive barriers. One interspecific barrier, known as unilateral incongruity or incompatibility (UI), occurs when species display unidirectional compatibility in interspecific crosses. In the wild tomato species Solanum pennellii, both SI and self-compatible (SC) populations express UI when crossed with domesticated tomato, offering a useful model system to dissect the molecular mechanisms involved in reproductive barriers. In this study, the timing of reproductive barrier establishment during pistil development was determined in SI and SC accessions of S. pennellii using a semi-in vivo system to track pollen-tube growth in developing styles. Both SI and UI barriers were absent in styles 5 days prior to flower opening, but were established by 2 days before flower opening, with partial barriers detected during a transition period 3-4 days before flower opening. The developmental expression dynamics of known SI factors, S-RNases and HT proteins, was also examined. The accumulation of HT-A protein coincided temporally and spatially with UI barriers in developing pistils. Proteomic analysis of stigma/styles from key developmental stages showed a switch in protein profiles from cell-division-associated proteins in immature stigma/styles to a set of proteins in mature stigma/styles that included S-RNases, HT-A protein and proteins associated with cell-wall loosening and defense responses, which could be involved in pollen-pistil interactions. Other prominent proteins in mature stigma/styles were those involved in lipid metabolism, consistent with the accumulation of lipid-rich material during pistil maturation.
Collapse
Affiliation(s)
- Subbaiah C. Chalivendra
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Present address: Valent BioSciences Corporation, Long Grove, IL 60047, USA
| | - Gloria Lopez-Casado
- Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA
- Present address: Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) ‘La Mayora’, Centro Mixto CSIC-Universidad de Málaga, E-29760 Algarrobo-Costa, Málaga, Spain
| | - Aruna Kumar
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Present address: Amity Institute of Biotechnology, J3 block, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Alina R. Kassenbrock
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Suzanne Royer
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | | | - Paul A. Covey
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Laura A. Dempsey
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Stephen M. Stack
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Jocelyn K.C. Rose
- Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
19
|
García-Valencia LE, Bravo-Alberto CE, Cruz-García F. Evitando el incesto en las plantas: control genético y bioquímico. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Serrano I, Olmedilla A. Histochemical location of key enzyme activities involved in receptivity and self-incompatibility in the olive tree (Olea europaea L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:40-9. [PMID: 23116670 DOI: 10.1016/j.plantsci.2012.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 05/24/2023]
Abstract
Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species.
Collapse
Affiliation(s)
- Irene Serrano
- Department of Plant Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | | |
Collapse
|
21
|
Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012; 8:e1002838. [PMID: 22844253 PMCID: PMC3405996 DOI: 10.1371/journal.pgen.1002838] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology, and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Serrano I, Romero-Puertas MC, Rodríguez Serrano M, Sandalio LM, Olmedilla A. Role of peroxynitrite in programmed cell death induced in self-incompatible pollen. PLANT SIGNALING & BEHAVIOR 2012; 7:779-81. [PMID: 22751302 PMCID: PMC3583962 DOI: 10.4161/psb.20570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species and NO are involved in the signaling pathway of programmed cell death (PCD). Information concerning the role of these molecules in self-incompatible pollination is scarce especially in non-model species studied in vivo. We recently reported that in the olive tree, compatible and self-incompatible pollen have different levels of reactive oxygen and nitrogen species and that PCD is induced in self-incompatible pollen. Levels of O 2 (.-) and NO are higher in pollen after self-incompatible pollination than after compatible pollination. The presence of these reactive species was concomitant with the presence of peroxynitrite. Similar results were obtained on pollen-germination experiments both in vivo and in vitro. These data, together with observations made after treating pollinated flowers with scavengers, suggest that peroxynitrite plays a role in PCD induced after self-incompatible pollination and we propose here a model to describe the way in which it might work.
Collapse
Affiliation(s)
- Irene Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | |
Collapse
|
23
|
Matsumoto D, Yamane H, Abe K, Tao R. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. PLANT PHYSIOLOGY 2012; 159:1252-62. [PMID: 22548785 PMCID: PMC3387707 DOI: 10.1104/pp.112.197343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 05/23/2023]
Abstract
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.
Collapse
|
24
|
Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:78-83. [PMID: 21968124 DOI: 10.1016/j.pbi.2011.09.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) in angiosperms prevents inbreeding and promotes outcrossing to generate genetic diversity. In many angiosperms, self/non-self recognition in SI is accomplished by male-specificity and female-specificity determinants (S-determinants), encoded at the S-locus. Recent studies using genetic, molecular biological and biochemical approaches have revealed that angiosperms utilize diverse self/non-self discrimination systems, which can be classified into two fundamentally different systems, self-recognition and non-self recognition systems. The self-recognition system, adopted by Brassicaceae and Papaveraceae, depends on a specific interaction between male and female S-determinants derived from the same S-haplotype. The non-self recognition system, found in Solanaceae, depends on non-self (different S-haplotype)-specific interaction between male and female S-determinants, and the male S-determinant genes are duplicated to recognize diverse non-self female S-determinants.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.
| | | |
Collapse
|
25
|
Matsumoto D, Tao R. Isolation of Pollen-expressed Actin as a Candidate Protein Interacting with S-RNase in Prunus avium L. ACTA ACUST UNITED AC 2012. [DOI: 10.2503/jjshs1.81.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Distefano G, Gentile A, Herrero M. Pollen-pistil interactions and early fruiting in parthenocarpic citrus. ANNALS OF BOTANY 2011; 108:499-509. [PMID: 21795277 PMCID: PMC3158699 DOI: 10.1093/aob/mcr187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS An intense pollen-pistil interaction precedes fertilization. This interaction is of particular relevance in agronomically important species where seeds or fruits are the edible part. Over time some agronomically species have been selected for the ability to produce fruit without seeds. While this phenomenon is critical for commercial production in some species, very little is known about the events behind the production of seedless fruit. In this work, the relationship between pollen-pistil interaction and the onset of fruiting was investigated in citrus mandarin. METHODS Pistils were sequentially examined in hand-pollinated flowers paying attention to pollen-tube behaviour, and to cytochemical changes along the pollen-tube pathway. To evaluate which of these changes were induced by pollination/fertilization and which were developmentally regulated, pollinated and unpollinated pistils were compared. Also the onset of fruiting was timed and changes in the ovary examined. KEY RESULTS Conspicuous changes occurred in the pistil along the pollen-tube pathway, which took place in a basipetal way encompassing the timing of pollen-tube growth. However, these changes appear to be developmentally regulated as they happened in the same way and at the same time in unpollinated flowers. Moreover, the onset of fruiting occurred prior to fertilization and the very same changes could be observed in unpollinated flowers. CONCLUSIONS Pollen-pistil interaction in citrus showed similarities with unrelated species and families belonging to other taxa. The uncoupling of the reproductive and fruiting processes accounts for the parthenocarpic ability of unpollinated flowers to produce fruit in citrus. However, the maintenance of a functional reproductive process reflects the potential to produce seeded fruits, providing a basis for the understanding of the production of seeded or unseeded fruits and further understanding of the process of parthenocarpy in other species.
Collapse
Affiliation(s)
- G Distefano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania 95123, Italy.
| | | | | |
Collapse
|
27
|
Abstract
BACKGROUND For the Solanaceae-type self-incompatibility, also possessed by Rosaceae and Plantaginaceae, the specificity of self/non-self interactions between pollen and pistil is controlled by two polymorphic genes at the S-locus: the S-locus F-box gene (SLF or SFB) controls pollen specificity and the S-RNase gene controls pistil specificity. SCOPE This review focuses on the work from the authors' laboratory using Petunia inflata (Solanaceae) as a model. Here, recent results on the identification and functional studies of S-RNase and SLF are summarized and a protein-degradation model is proposed to explain the biochemical mechanism for specific rejection of self-pollen tubes by the pistil. CONCLUSIONS The protein-degradation model invokes specific degradation of non-self S-RNases in the pollen tube mediated by an SLF, and can explain compatible versus incompatible pollination and the phenomenon of competitive interaction, where SI breaks down in pollen carrying two different S-alleles. In Solanaceae, Plantaginaceae and subfamily Maloideae of Rosaceae, there also exist multiple S-locus-linked SLF/SFB-like genes that potentially function as the pollen S-gene. To date, only three such genes, all in P. inflata, have been examined, and they do not function as the pollen S-gene in the S-genotype backgrounds tested. Interestingly, subfamily Prunoideae of Rosaceae appears to possess only a single SLF/SFB gene, and competitive interaction, observed in Solanaceae, Plantaginaceae and subfamily Maloideae, has not been observed. Thus, although the cytotoxic function of S-RNase is an integral part of SI in Solanaceae, Plantaginaceae and Rosaceae, the function of SLF/SFB may have diverged. This highlights the complexity of the S-RNase-based SI mechanism. The review concludes by discussing some key experiments that will further advance our understanding of this self/non-self discrimination mechanism.
Collapse
Affiliation(s)
- Xiaoying Meng
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Teh-hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- For correspondence. E-mail
| |
Collapse
|
28
|
Köthke S, Köck M. The Solanum lycopersicum RNaseLER is a class II enzyme of the RNase T2 family and shows preferential expression in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:840-7. [PMID: 21237531 DOI: 10.1016/j.jplph.2010.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/12/2010] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Ribonucleases (RNases) occur in different gene families, functioning in RNA processing and degradation. In this study, we report on cloning and characterization of RNaseLER, the first class II gene of the RNase T2 family in tomato (Solanum lycopersicum). The family also includes the class I members RNaseLE and RNaseLX, and the class III group of S-RNases acting in self incompatibility. The RNaseLER gene was cloned by polymerase chain reaction (PCR)-assisted methods. Structural analyses of RNaseLER and homologous genes revealed unique key features of class II RNase T2 genes. RNaseLER is a single copy gene in tomato and codes for a primary protein of 260 amino acids. Subcellular localization analyzed with a RNaseLER-eYFP fusion protein and co-localization experiments revealed an intracellular accumulation in the endoplasmic reticulum. Transgenic Nicotiana benthamiana plants carrying the uidA reporter gene under the control of a 900-bp RNaseLER promoter sequence express the reporter gene predominantly in guard cells and trichomes. This previously unknown spatial expression of a RNase T2 gene is consistent with ubiquitous detection of low RNaseLER transcript abundances in almost all parts of tomato plants. As revealed by quantitative real-time RT-PCR analysis treatments with abscisic acid, ethylene or other abiotic and biotic stress factors did not affect RNaseLER expression significantly. Unlike tomato class I genes, RNaseLER represents a constitutively expressed gene with a cell-specific role in stomata and trichomes and no involvement in stress responses.
Collapse
Affiliation(s)
- Sabine Köthke
- Martin-Luther-Universität Halle-Wittenberg, Biozentrum, Weinbergweg 22, D-06120 Halle, Germany
| | | |
Collapse
|
29
|
Li W, Chetelat RT. A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 2011; 330:1827-30. [PMID: 21205670 DOI: 10.1126/science.1197908] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Self-incompatibility (SI)--intraspecific pollen recognition systems that allow plants to avoid inbreeding--in the Solanaceae (the nightshade family) is controlled by a polymorphic S locus where "self" pollen is rejected on pistils with matching S alleles. In contrast, unilateral interspecific incompatibility (UI) prevents hybridization between related species, most commonly when the pollen donor is self-compatible (SC) and the recipient is SI. We observed that in Solanum, a pollen-expressed Cullin1 gene with high similarity to Petunia SI factors interacts genetically with a gene at or near the S locus to control UI. Cultivated tomato and related red- or orange-fruited species (all SC) exhibit the same loss-of-function mutation in this gene, whereas the green-fruited species (mostly SI) contain a functional allele; hence, similar biochemical mechanisms underlie the rejection of both "self" and interspecific pollen.
Collapse
Affiliation(s)
- Wentao Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
30
|
Kubo KI, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima SI, Ando T, Isogai A, Kao TH, Takayama S. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 2010; 330:796-9. [PMID: 21051632 DOI: 10.1126/science.1195243] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Self-incompatibility in flowering plants prevents inbreeding and promotes outcrossing to generate genetic diversity. In Solanaceae, a multiallelic gene, S-locus F-box (SLF), was previously shown to encode the pollen determinant in self-incompatibility. It was postulated that an SLF allelic product specifically detoxifies its non-self S-ribonucleases (S-RNases), allelic products of the pistil determinant, inside pollen tubes via the ubiquitin-26S-proteasome system, thereby allowing compatible pollinations. However, it remained puzzling how SLF, with much lower allelic sequence diversity than S-RNase, might have the capacity to recognize a large repertoire of non-self S-RNases. We used in vivo functional assays and protein interaction assays to show that in Petunia, at least three types of divergent SLF proteins function as the pollen determinant, each recognizing a subset of non-self S-RNases. Our findings reveal a collaborative non-self recognition system in plants.
Collapse
Affiliation(s)
- Ken-ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Indriolo E, Goring DR. Plant science. Pollen gets more complex. Science 2010; 330:767-8. [PMID: 21051623 DOI: 10.1126/science.1198346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Emily Indriolo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | |
Collapse
|
32
|
Fields AM, Wang N, Hua Z, Meng X, Kao TH. Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box protein, PiSLF2, and a PiSLF-like protein, PiSLFLb-S2. PLANT MOLECULAR BIOLOGY 2010; 74:279-92. [PMID: 20700627 DOI: 10.1007/s11103-010-9672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/26/2010] [Indexed: 05/10/2023]
Abstract
Self-incompatible solanaceous species possess the S-RNase and SLF (S-locus F-box) genes at the highly polymorphic S-locus, and their products mediate S-haplotype-specific rejection of pollen tubes in the style. After a pollen tube grows into the style, the S-RNases produced in the style are taken up; however, only self S-RNase (product of the matching S-haplotype) can inhibit the subsequent growth of the pollen tube. Based on the finding that non-self interactions between PiSLF (Petunia inflata SLF) and S-RNase are stronger than self-interactions, and based on the biochemical properties of PiSLF, we previously proposed that a PiSLF preferentially interacts with its non-self S-RNases to mediate their ubiquitination and degradation, thereby only allowing self S-RNase to exert its cytotoxic function. We further divided PiSLF into three potential Functional Domains (FDs), FD1-FD3, based on sequence comparison of PiSLF and PiSLF-like proteins, and based on S-RNase-binding properties of these proteins and various truncated forms of PiSLF(2) (S(2) allelic variant of PiSLF). In this work, we examined the in vivo function of FD2, which we proposed to be responsible for strong, general interactions between PiSLF and S-RNase. We swapped FD2 of PiSLF(2) with the corresponding region of PiSLFLb-S(2) (S(2) allelic variant of a PiSLF-like protein), and expressed GFP-fused chimeric proteins, named b-2-b and 2-b-2, in S(2) S(3) transgenic plants. We showed that neither chimeric protein retained the SI function of PiSLF(2), suggesting that FD2 is necessary, but not sufficient, for the function of PiSLF. Moreover, since we previously found that b-2-b and 2-b-2 only interacted with S(3)-RNase ~50 and ~30%, respectively, as strongly as did PiSLF(2) in vitro, their inability to function as PiSLF(2) is also consistent with our model predicating on strong interaction between a PiSLF and its non-self S-RNases as part of the biochemical basis for S-haplotype-specific rejection of pollen tubes.
Collapse
Affiliation(s)
- Allison M Fields
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 403 Althouse Lab, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
33
|
Robertson K, Goldberg EE, Igić B. Comparative evidence for the correlated evolution of polyploidy and self-compatibility in Solanaceae. Evolution 2010; 65:139-55. [PMID: 20722729 DOI: 10.1111/j.1558-5646.2010.01099.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Breakdown of self-incompatibility occurs repeatedly in flowering plants with important evolutionary consequences. In plant families in which self-incompatibility is mediated by S-RNases, previous evidence suggests that polyploidy may often directly cause self-compatibility through the formation of diploid pollen grains. We use three approaches to examine relationships between self-incompatibility and ploidy. First, we test whether evolution of self-compatibility and polyploidy is correlated in the nightshade family (Solanaceae), and find the expected close association between polyploidy and self-compatibility. Second, we compare the rate of breakdown of self-incompatibility in the absence of polyploidy against the rate of breakdown that arises as a byproduct of polyploidization, and we find the former to be greater. Third, we apply a novel extension to these methods to show that the relative magnitudes of the macroevolutionary pathways leading to self-compatible polyploids are time dependent. Over small time intervals, the direct pathway from self-incompatible diploids is dominant, whereas the pathway through self-compatible diploids prevails over longer time scales. This pathway analysis is broadly applicable to models of character evolution in which sequential combinations of rates are compared. Finally, given the strong evidence for both irreversibility of the loss of self-incompatibility in the family and the significant association between self-compatibility and polyploidy, we argue that ancient polyploidy is highly unlikely to have occurred within the Solanaceae, contrary to previous claims based on genomic analyses.
Collapse
Affiliation(s)
- Kelly Robertson
- Department of Biological Sciences, 840 West Taylor St., M/C 067, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | |
Collapse
|
34
|
Roldán JA, Quiroga R, Goldraij A. Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alata. PLANT CELL REPORTS 2010; 29:735-46. [PMID: 20443007 DOI: 10.1007/s00299-010-0860-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 05/29/2023]
Abstract
Self-incompatibility in the Solanaceae is mediated by S-RNase alleles expressed in the style, which confer specificity for pollen recognition. Nicotiana alata has been successfully used as an experimental model to elucidate cellular and molecular aspects of S-RNase-based self-incompatibility in Solanaceae. However, S-RNase alleles of this species have not been surveyed from natural populations and consequently the S-haplotype diversity is poorly known. Here the molecular and functional characterization of seven S-RNase candidate sequences, identified from a natural population of N. alata, are reported. Six of these candidates, S ( 5 ), S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ), showed plant-specific amplification in the natural population and style-specific expression, which increased gradually during bud maturation, consistent with the reported S-RNase expression. In contrast, the S ( 63 ) ribonuclease was present in all plants examined and was ubiquitously expressed in different organs and bud developmental stages. Genetic segregation analysis demonstrated that S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ) alleles were fully functional novel S-RNases, while S ( 5 ) and S ( 63 ) resulted to be non-S-RNases, although with a clearly distinct pattern of expression. These results reveal the importance of performing functional analysis in studies of S-RNase allelic diversity. Comparative phylogenetic analysis of six species of Solanaceae showed that N. alata S-RNases were included in eight transgeneric S-lineages. Phylogenetic pattern obtained from the inclusion of the novel S-RNase alleles confirms that N. alata represents a broad sample of the allelic variation at the S-locus of the Solanaceae.
Collapse
Affiliation(s)
- Juan A Roldán
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | | | | |
Collapse
|
35
|
Wünsch A, Tao R, Hormaza JI. Self-compatibility in 'Cristobalina' sweet cherry is not associated with duplications or modified transcription levels of S-locus genes. PLANT CELL REPORTS 2010; 29:715-721. [PMID: 20411390 DOI: 10.1007/s00299-010-0857-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/24/2010] [Accepted: 04/08/2010] [Indexed: 05/29/2023]
Abstract
Sweet cherry shows S-RNase-based gametophytic self-incompatibility, which prevents self- and cross-fertilization between genetically related individuals. The specificity of the self-incompatible reaction is determined by two genes located in the S-locus. These encode a pistil-expressed ribonuclease (S-RNase) that inhibits self pollen tube growth, and a pollen-expressed F-box protein (SFB) that may be involved in the cytotoxicity of self-S-RNases. Initial genetic and pollination studies in a self-compatible sweet cherry cultivar, 'Cristobalina' (S (3) S (6)), showed that self-compatibility was caused by the loss of pollen function of both haplotypes (S (3) and S (6)). In this study, we further characterize self-compatibility in this genotype by molecular analysis of the S-locus. DNA blot analyses using S-RNase and SFB probes show no duplications of 'Cristobalina' S-locus genes or differences in the restriction patterns when compared with self-incompatible cultivars with the same S-genotype. Furthermore, reverse transcriptase-PCR of S-locus genes and quantitative reverse transcription-PCR of SFBs revealed no differences at the transcription level when compared with a self-incompatible genotype. The results of this study show that no differences at the S-locus can be correlated with self-compatibility, indicating the possible involvement of non-S-locus modifiers in self-incompatibility breakdown in this cultivar.
Collapse
Affiliation(s)
- A Wünsch
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.
| | | | | |
Collapse
|
36
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
37
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
38
|
Hunter P. Me, myself and I. The genetics and molecular biology behind self-incompatibility and the avoidance of inbreeding in plants. EMBO Rep 2009; 10:1297-300. [PMID: 19949410 DOI: 10.1038/embor.2009.251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
39
|
Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics 2009; 184:411-27. [PMID: 19917768 DOI: 10.1534/genetics.109.109728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetraploid sour cherry (Prunus cerasus) has an S-RNase-based gametophytic self-incompatibility (GSI) system; however, individuals can be either self-incompatible (SI) or self-compatible (SC). Unlike the situation in the Solanaceae, where self-compatibility accompanying polyploidization is often due to the compatibility of heteroallelic pollen, the genotype-dependent loss of SI in sour cherry is due to the compatibility of pollen containing two nonfunctional S haplotypes. Sour cherry individuals with the S(4)S(6)S(36a)S(36b) genotype are predicted to be SC, as only pollen containing both nonfunctional S(36a) and S(36b) haplotypes would be SC. However, we previously found that individuals of this genotype were SI. Here we describe four nonfunctional S(36) variants. Our molecular analyses identified a mutation that would confer loss of stylar S function for one of the variants, and two alterations that might cause loss of pollen S function for all four variants. Genetic crosses showed that individuals possessing two nonfunctional S(36) haplotypes and two functional S haplotypes have reduced self-fertilization due to a very low frequency of transmission of the one pollen type that would be SC. Our finding that the underlying mechanism limiting successful transmission of genetically compatible gametes does not involve GSI is consistent with our previous genetic model for Prunus in which heteroallelic pollen is incompatible. This provides a unique case in which breakdown of SI does not occur despite the potential to generate SC pollen genotypes.
Collapse
|
40
|
Suzuki G. Recent progress in plant reproduction research: the story of the male gametophyte through to successful fertilization. PLANT & CELL PHYSIOLOGY 2009; 50:1857-64. [PMID: 19825944 DOI: 10.1093/pcp/pcp142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual reproduction is an important biological event not only for evolution but also for breeding in plants. It is a well known fact that Charles Darwin (1809-1882) was interested in the reproduction system of plants as part of his concept of 'species' and 'evolution.' His keen observation and speculation is timeless even in the current post-genome era. In the Darwin anniversary year of 2009, I have summarized recent molecular genetic studies of plant reproduction, focusing especially on male gametophyte development, pollination and fertilization. We are just beginning to understand the molecular mechanisms of the elaborate reproduction system in flowering plants, which have been a mystery for >100 years.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan.
| |
Collapse
|
41
|
Meng X, Hua Z, Wang N, Fields AM, Dowd PE, Kao TH. Ectopic expression of S-RNase of Petunia inflata in pollen results in its sequestration and non-cytotoxic function. ACTA ACUST UNITED AC 2009; 22:263-75. [PMID: 20033448 DOI: 10.1007/s00497-009-0114-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/21/2009] [Indexed: 11/28/2022]
Abstract
The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S(2)-RNase, S(3)-RNase and non-glycosylated S(3)-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.
Collapse
Affiliation(s)
- Xiaoying Meng
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hopper SD, Lambers H. Darwin as a plant scientist: a Southern Hemisphere perspective. TRENDS IN PLANT SCIENCE 2009; 14:421-435. [PMID: 19616988 DOI: 10.1016/j.tplants.2009.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/04/2009] [Accepted: 06/06/2009] [Indexed: 05/28/2023]
Abstract
Events around the world this year celebrate the bicentenary of the birth of Charles Darwin (1809-1882) and the sesquicentenary of publication of his most important work, The Origin of Species (Darwin 1859). The associated plethora of books and papers now appearing to commemorate Darwin's work continue the traditional emphasis on his zoological and geological contributions. There has been some recent attention directed towards Darwin's relatively unsung but significant accomplishments as a botanist. Here, we bring together a review of Darwin's botanical discoveries and experiments and relevant aspects of his geological investigations, with a focus on the Southern Hemisphere. This is a relatively unexplored aspect of Darwin's contributions that yields some new insights meriting future research.
Collapse
|