1
|
Reche DL, Gonçalves‐Vidigal MC, Vidigal Filho PS, Vaz Bisneta M, Lacanallo GF, dos Santos AAB, dos Santos AP. Genetic mapping of loci associated with yield and their components in black common bean (Phaseolus vulgaris L.). THE PLANT GENOME 2025; 18:e70024. [PMID: 40189482 PMCID: PMC11972933 DOI: 10.1002/tpg2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
The increase in world population linked to climate change leads to the need to develop more productive and more adapted cultivars of food species. Quantitative trait loci (QTLs) mapping is a useful tool although, interaction between genotype and the environment is still a challenge. In this study, we sought to identify QTL related to grain yield and the production components in common beans (Phaseolus vulgaris L.) supported by QTL × $\times $ environment interaction. Two hundred eight recombinant inbred lines obtained from the Awauna UEM × $ \times $ IPR88 Uirapuru common bean cross were evaluated in 2017, 2018, and 2019 in field conditions under a 15 × 15 triple lattice experimental design. QTL mapping was estimated using genotypic means and a genetic linkage map with 288 single nucleotide polymorphism markers. Five QTLs associated with plant height (PH), number of pods per plant (NPP), first pod height (FPH), 100-seed weight (SW), and grain yield per plant (GYP) were identified on chromosomes Pv01, Pv04, Pv08, and Pv10. Interestingly, three of these QTLs were co-localized for more than one trait, where the QTL for PH, NPP, and GYP co-locate on Pv01, the QTL for PH and FPH co-locate on Pv04, and the QTL for NPP and SW co-locate on Pv08. In turn, on Pv10, two distinct QTLs were found for SW. The identification of these QTLs stands out in Brazil since relatively little research is directed at this economically important commercial group. It is noteworthy that the molecular markers found linked to the QTLs must later be validated to be used in a multi-trait marker-assisted selection.
Collapse
|
2
|
Chang Y, Zhou D, Tang Y, Ou S, Wang S. An improved deep learning network for image detection and its application in Dendrobii caulis decoction piece. Sci Rep 2024; 14:13505. [PMID: 38866849 PMCID: PMC11169365 DOI: 10.1038/s41598-024-63398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
In recent years, with the increasing demand for high-quality Dendrobii caulis decoction piece, the identification of D. caulis decoction piece species has become an urgent issue. However, the current methods are primarily designed for professional quality control and supervision. Therefore, ordinary consumers should not rely on these methods to assess the quality of products when making purchases. This research proposes a deep learning network called improved YOLOv5 for detecting different types of D. caulis decoction piece from images. In the main architecture of improved YOLOv5, we have designed the C2S module to replace the C3 module in YOLOv5, thereby enhancing the network's feature extraction capability for dense and small targets. Additionally, we have introduced the Reparameterized Generalized Feature Pyramid Network (RepGFPN) module and Optimal Transport Assignment (OTA) operator to more effectively integrate the high-dimensional and low-dimensional features of the network. Furthermore, a new large-scale dataset of Dendrobium images has been established. Compared to other models with similar computational complexity, improved YOLOv5 achieves the highest detection accuracy, with an average mAP@.05 of 96.5%. It is computationally equivalent to YOLOv5 but surpasses YOLOv5 by 2 percentage points in terms of accuracy.
Collapse
Affiliation(s)
- Yonghu Chang
- School of Medical Information Engineering, Zunyi Medical University, Zunyi, 563000, China
| | - Dejin Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yongchuan Tang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuiping Ou
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Sen Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Cirilli M, Baccichet I, Chiozzotto R, Silvestri C, Rossini L, Bassi D. Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch). HORTICULTURE RESEARCH 2021; 8:232. [PMID: 34719677 PMCID: PMC8558339 DOI: 10.1038/s41438-021-00661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Fruit size and shape are critical agronomical and pomological attributes and prime targets in peach breeding programs. Apart from the flat peach type, a Mendelian trait well-characterized at the genetic level, ample diversity of fruit size and shapes is present across peach germplasms. Nevertheless, knowledge of the underlying genomic loci remains limited. In this work, fruit size and shape were assessed in a collection of non-flat peach accessions and selections, under controlled fruit load conditions. The architecture of these traits was then dissected by combining association and linkage mapping, revealing a major locus on the proximal end of chromosome 6 (qSHL/Fs6.1) explaining a large proportion of phenotypic variability for longitudinal shape and also affecting fruit size. A second major locus for fruit longitudinal shape (qSHL5.1), probably also affecting fruit size, was found co-localizing at locus G, suggesting pleiotropic effects of peach/nectarine traits. An additional QTL for fruit longitudinal shape (qSHL6.2) was identified in the distal end of chromosome 6 in a cross with an ornamental double-flower peach and co-localized with the Di2 locus, controlling flower morphology. Besides assisting breeding activities, knowledge of loci controlling fruit size and shape paves the way for more in-depth studies aimed at the identification of underlying genetic variant(s).
Collapse
Affiliation(s)
- Marco Cirilli
- Università degli Studi di Milano - DiSAA, Milano, Italy.
| | | | | | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Milano, Italy
| |
Collapse
|
4
|
Kadam NN, Jagadish SVK, Struik PC, van der Linden CG, Yin X. Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2575-2586. [PMID: 30882149 PMCID: PMC6487590 DOI: 10.1093/jxb/erz120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 05/22/2023]
Abstract
We explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 40% under water deficit conditions. Using 213 randomly selected genotypes as the training set, 90 single nucleotide polymorphism (SNP) loci were identified using a genome-wide association study (GWAS), explaining 42-77% of crop model parameter variation. SNP-based parameter values estimated from the additive loci effects were fed into the model. For the training set, the SNP-based model accounted for 37% (control) and 29% (water deficit) of yield variation, less than the 78% explained by a statistical genomic prediction (GP) model for the control treatment. Both models failed in predicting yields of the 54 testing genotypes. However, compared with the GP model, the SNP-based crop model was advantageous when simulating yields under either control or water stress conditions in an independent season. Crop model sensitivity analysis ranked the SNP loci for their relative importance in accounting for yield variation, and the rank differed greatly between control and water deficit environments. Crop models have the potential to use single-environment information for predicting phenotypes under different environments.
Collapse
Affiliation(s)
- Niteen N Kadam
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
- International Rice Research Institute, Metro Manila, Philippines
| | - S V Krishna Jagadish
- International Rice Research Institute, Metro Manila, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - C Gerard van der Linden
- Plant Breeding, Department of Plant Sciences, Wageningen University & Research, AJ Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
6
|
Guan H, Ali F, Pan Q. Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay. FRONTIERS IN PLANT SCIENCE 2017; 8:2063. [PMID: 29250099 PMCID: PMC5714861 DOI: 10.3389/fpls.2017.02063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/17/2017] [Indexed: 05/16/2023]
Abstract
Recombination is a vital characteristic for quantitative trait loci mapping and breeding to enhance the yield potential of maize. However, recombination characteristics in globally used segregating populations have never been evaluated at similar genetic marker densities. This study aimed to divulge the characteristics of recombination events, recombinant chromosomal segments, and recombination frequency for four dissimilar populations. These populations were doubled haploid (DH), recombination inbred line (RIL), intermated B73xMo17 (IBM), and multi-parent advanced generation inter-cross (MAGIC), using the Illumina MaizeSNP50 BeadChip to provide markers. Our results revealed that the average number of recombination events was 16, 41, 72, and 86 per line in DH, RIL, IBM, and MAGIC populations, respectively. Accordingly, the average length of recombinant chromosomal segments was 84.8, 47.3, 29.2, and 20.4 Mb in DH, RIL, IBM, and MAGIC populations, respectively. Furtherly, the recombination frequency varied in different genomic regions and population types [DH (0-12.7 cM/Mb), RIL (0-15.5 cM/Mb), IBM (0-24.1 cM/Mb), MAGIC (0-42.3 cM/Mb)]. Utilizing different sub-sets of lines, the recombination bin number and size were analyzed in each population. Additionally, different sub-sets of markers and lines were employed to estimate the recombination bin number and size via formulas for relationship in these populations. The relationship between recombination events and recombination bin length was also examined. Our results contribute to determining the most suitable number of genetic markers, lines in each population, and population type for successful mapping and breeding.
Collapse
Affiliation(s)
- Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- National Engineering Laboratory of Wheat and Maize, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, China
| | - Farhan Ali
- Cereal Crops Research Institute, Nowshera, Pakistan
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qingchun Pan,
| |
Collapse
|
7
|
Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:649. [PMID: 27242850 PMCID: PMC4872523 DOI: 10.3389/fpls.2016.00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 05/03/2023]
Abstract
The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato, and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3), genotypes (30), and growing conditions (19 years and 16 nutrient and environmental treatments). At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g/100 g FW), followed by peach (2.2 to 20 g/100 g FW) and tomato (1.4 to 5 g/100 g FW). Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism, and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs. cherry tomato; cherry tomato vs. peach; peach vs. tomato). On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism) was conserved among the three fruit species. These distinct modes appear to be quite species-specific, but the intensity of the effect may significantly vary depending on the genotype and management practices. These results provide novel insights into the drivers of differences in soluble sugar concentration among fleshy fruits.
Collapse
Affiliation(s)
- Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | - Huan Wu
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | | | | | - Nadia Bertin
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Hélène Gautier
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Benhong Wu
- Institute of Botany – Chinese Academy of SciencesBeijing, China
| | | | - Eric Gomès
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | | | - Michel Génard
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| |
Collapse
|
8
|
Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242850 DOI: 10.3389/fcls.2016.00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato, and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3), genotypes (30), and growing conditions (19 years and 16 nutrient and environmental treatments). At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g/100 g FW), followed by peach (2.2 to 20 g/100 g FW) and tomato (1.4 to 5 g/100 g FW). Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism, and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs. cherry tomato; cherry tomato vs. peach; peach vs. tomato). On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism) was conserved among the three fruit species. These distinct modes appear to be quite species-specific, but the intensity of the effect may significantly vary depending on the genotype and management practices. These results provide novel insights into the drivers of differences in soluble sugar concentration among fleshy fruits.
Collapse
Affiliation(s)
- Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | - Huan Wu
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | | | | | - Nadia Bertin
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| | - Hélène Gautier
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| | - Benhong Wu
- Institute of Botany - Chinese Academy of Sciences Beijing, China
| | | | - Eric Gomès
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | | | - Michel Génard
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| |
Collapse
|
9
|
Grandillo S, Cammareri M. Molecular Mapping of Quantitative Trait Loci in Tomato. COMPENDIUM OF PLANT GENOMES 2016. [DOI: 10.1007/978-3-662-53389-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Okello RCO, Heuvelink E, de Visser PHB, Struik PC, Marcelis LFM. What drives fruit growth? FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:817-827. [PMID: 32480724 DOI: 10.1071/fp15060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/25/2015] [Indexed: 05/13/2023]
Abstract
Cell division, endoreduplication (an increase in nuclear DNA content without cell division) and cell expansion are important processes for growth. It is debatable whether organ growth is driven by all three cellular processes. Alternatively, all could be part of a dominant extracellular growth regulatory mechanism. Cell level processes have been studied extensively and a positive correlation between cell number and fruit size is commonly reported, although few positive correlations between cell size or ploidy level and fruit size have been found. Here, we discuss cell-level growth dynamics in fruits and ask what drives fruit growth and during which development stages. We argue that (1) the widely accepted positive correlation between cell number and fruit size does not imply a causal relationship; (2) fruit growth is regulated by both cell autonomous and noncell autonomous mechanisms as well as a global coordinator, the target of rapamycin; and (3) increases in fruit size follow the neocellular theory of growth.
Collapse
Affiliation(s)
- Robert C O Okello
- Wageningen University and Research Centre, Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - Ep Heuvelink
- Wageningen University and Research Centre, Horticulture and Product Physiology Group, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Pieter H B de Visser
- Wageningen University and Research Centre, Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - Paul C Struik
- Wageningen University and Research Centre, Centre for Crop Systems Analysis, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Leo F M Marcelis
- Wageningen University and Research Centre, Horticulture and Product Physiology Group, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
11
|
Asins MJ, Raga V, Roca D, Belver A, Carbonell EA. Genetic dissection of tomato rootstock effects on scion traits under moderate salinity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:667-79. [PMID: 25628165 DOI: 10.1007/s00122-015-2462-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/10/2015] [Indexed: 05/22/2023]
Abstract
Rootstock HKT1 genotype affected fruit [Na(+)] and non-commercial fruit yield; QTL analysis of rootstock-mediated scion nutrition is a powerful forward genetic approach to identify wild genes for rootstock breeding. The present study approaches the QTL dissection of rootstock effects on a commercial hybrid variety grafted on a population of RILs derived from Solanum pimpinellifolium, genotyped for 4370 segregating SNPs from the SolCAP tomato panel and grown under moderate salinity. Results are compared to those previously obtained under high salinity. The most likely functional candidate genes controlling the scion [Na(+)] were rootstock HKT1;1 and HKT1;2 as it was previously reported for non-grafted genotypes. The higher fruit [Na(+)] found when rootstock genotype was homozygote for SpHKT1 supports the thesis that scion HKT1 is loading Na(+) into the phloem sap in leaves and unloading it in sink organs. A significant increment of small, mostly seedless, fruits was found associated with SlHKT1 homozygous rootstocks. Just grafting increased the incidence of blossom end rot and delayed fruit maturation but there were rootstock RILs that increased commercial fruit yield under moderate salinity. The heritability and number of QTLs involved were lower and different than those found under high salinity. Four large contributing (>17%) rootstock QTLs, controlling the leaf concentrations of B, K, Mg and Mo were detected whose 2 Mbp physical intervals contained B, K, Mg and Mo transporter-coding genes, respectively. Since a minimum of 3 QTLs (two of them coincident with leaf K and Ca QTLs) were also found governing rootstock-mediated soluble-solids content of the fruit under moderate salinity, grafting desirable crop varieties on stress-tolerant rootstocks tenders an opportunity to increase both salt tolerance and quality.
Collapse
Affiliation(s)
- M J Asins
- IVIA, Carretera Moncada-Náquera, km 4.5, Apartado Oficial, 46113, Moncada, Valencia, Spain,
| | | | | | | | | |
Collapse
|
12
|
Okello RCO, de Visser PHB, Heuvelink E, Lammers M, de Maagd RA, Struik PC, Marcelis LFM. A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature. PHYSIOLOGIA PLANTARUM 2015; 153:403-418. [PMID: 24957883 DOI: 10.1111/ppl.12247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small ('Brioso') and intermediate ('Cappricia') sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole-plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate-controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in 'Cappricia' owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe-like) was higher while that of the inhibitory fw2.2 was lower in 'Cappricia'. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations.
Collapse
Affiliation(s)
- Robert C O Okello
- Greenhouse Horticulture, Wageningen UR, PO Box 644, 6700 AP, Wageningen, The Netherlands; Horticultural Supply Chains Group, Wageningen UR, PO Box 630, 6700 AP, Wageningen, The Netherlands; Centre for Crop Systems Analysis, Wageningen UR, PO Box 430, 6700 AK, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|