1
|
Zhang W, Wang H, Guo Y, Hao X, Li Y, He W, Zhao X, Cai S, Song X. Functional Validation of Different Alternative Splicing Variants of the Chrysanthemum lavandulifolium ClNUM1 Gene in Tobacco. Curr Issues Mol Biol 2024; 46:5242-5256. [PMID: 38920986 PMCID: PMC11201747 DOI: 10.3390/cimb46060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
The Asteraceae are widely distributed throughout the world, with diverse functions and large genomes. Many of these genes remain undiscovered and unstudied. In this study, we discovered a new gene ClNUM1 in Chrysanthemum lavandulifolium and studied its function. In this study, bioinformatics, RT-qPCR, paraffin sectioning, and tobacco transgenics were utilized to bioinformatically analyze and functionally study the three variable splice variants of the unknown gene ClNUM1 cloned from C. lavandulifolium. The results showed that ClNUM1.1 and ClNUM1.2 had selective 3' splicing and selective 5' splicing, and ClNUM1.3 had selective 5' splicing. When the corresponding transgenic tobacco plants were subjected to abiotic stress treatment, in the tobacco seedlings, the ClNUM1.1 gene and the ClNUM1.2 gene enhanced salt and low-temperature tolerance and the ClNUM1.3 gene enhanced low-temperature tolerance; in mature tobacco plants, the ClNUM1.1 gene was able to enhance salt and low-temperature tolerance, and the ClNUM1.2 and ClNUM1.3 genes were able to enhance low-temperature tolerance. In summary, there are differences in the functions of the different splice variants and the different seedling stages of transgenic tobacco, but all of them enhanced the resistance of tobacco to a certain extent. The analysis and functional characterization of the ClNUM1 gene provided new potential genes and research directions for abiotic resistance breeding in Chrysanthemum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (W.Z.); (H.W.); (Y.G.); (X.H.); (Y.L.); (W.H.); (X.Z.); (S.C.)
| |
Collapse
|
2
|
Liu L, Li X, Yuan L, Zhang G, Gao H, Xu X, Zhao H. XAP5 CIRCADIAN TIMEKEEPER specifically modulates 3' splice site recognition and is important for circadian clock regulation partly by alternative splicing of LHY and TIC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:151-157. [PMID: 35065375 DOI: 10.1016/j.plaphy.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Pre-mRNA splicing is an essential step during gene expression, which takes place in the spliceosome, a large dynamic ribonucleoprotein complex assembled in a stepwise manner. During the last decade, several spliceosomal mutants were functionally identified to cause a lengthened circadian period by introducing intron retention defects into circadian clock genes in Arabidopsis. However, the spliceosomal components that play opposite roles in the circadian period via alternative 3' splice site (Alt 3'ss) are largely unknown. Here, we demonstrated that XCT (XAP5 CIRCADIAN TIMEKEEPER) is a key spliceosomal component associated with multiple splicing factors. Moreover, genome-wide analysis revealed that inactivation of XCT particularly results in defects in Alt 3'ss recognition by RNA sequencing. Further analysis indicated that a strong alteration in the 3' splice sites of LHY and TIC partly accounts for the shortened circadian period of the xct mutant. Therefore, our results demonstrated that mutations in XCT shortened the circadian period partly by alternative splicing of LHY and TIC particularly in 3' splice site recognition, which provides new insight into the link between alternative splicing and the circadian clock.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China.
| | - Xiaoyun Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guofang Zhang
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hui Gao
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongtao Zhao
- College of Life Science, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
3
|
Li Z, Tang J, Bassham DC, Howell SH. Daily temperature cycles promote alternative splicing of RNAs encoding SR45a, a splicing regulator in maize. PLANT PHYSIOLOGY 2021; 186:1318-1335. [PMID: 33705553 PMCID: PMC8195531 DOI: 10.1093/plphys/kiab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Elevated temperatures enhance alternative RNA splicing in maize (Zea mays) with the potential to expand the repertoire of plant responses to heat stress. Alternative RNA splicing generates multiple RNA isoforms for many maize genes, and here we observed changes in the pattern of RNA isoforms with temperature changes. Increases in maximum daily temperature elevated the frequency of the major modes of alternative splices (AS), in particular retained introns and skipped exons. The genes most frequently targeted by increased AS with temperature encode factors involved in RNA processing and plant development. Genes encoding regulators of alternative RNA splicing were themselves among the principal AS targets in maize. Under controlled environmental conditions, daily changes in temperature comparable to field conditions altered the abundance of different RNA isoforms, including the RNAs encoding the splicing regulator SR45a, a member of the SR45 gene family. We established an "in protoplast" RNA splicing assay to show that during the afternoon on simulated hot summer days, SR45a RNA isoforms were produced with the potential to encode proteins efficient in splicing model substrates. With the RNA splicing assay, we also defined the exonic splicing enhancers that the splicing-efficient SR45a forms utilize to aid in the splicing of model substrates. Hence, with rising temperatures on hot summer days, SR45a RNA isoforms in maize are produced with the capability to encode proteins with greater RNA splicing potential.
Collapse
Affiliation(s)
- Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Tang
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Diane C Bassham
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
Alternative splicing and duplication of PI-like genes in maize. Gene 2020; 769:145064. [PMID: 32891770 DOI: 10.1016/j.gene.2020.145064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Alternative splicing and duplication provide the possibility of functional divergence of MADS-box genes. Compared with its Arabidopsis counterpart PI gene, Zmm16 in maize recruits a new role in carpel abortion and floral asymmetry, whereas the other two duplicated genes, Zmm18/29, have not yet been attributed to any function in flower development as a typical B class gene does. Here, alternatively spliced transcripts of three PIL genes were analyzed, among which we described the candidate functional isoforms and analyzed the potential effects of alternative splicing (AS) on protein-protein interactions as well, then their phylogenetic relationships with orthologs in typical grasses were further analyzed. Furthermore, we compared the cis-acting elements specific for three maize PIL genes, especially the elements related to methyl jasmonate (MeJA) and gibberellic acid (GA), both hormones involved in the sex-determination process in maize. Together with the results from the co-expression networks during reproductive organ development, we speculated that, due to duplication and alternative splicing, Zmm18/29 may play a role in GA- and MeJA-related developmental process. These results provide novel clues for experimental validation of the evolutional meaning of maize PIL genes.
Collapse
|
6
|
Romanowski A, Schlaen RG, Perez-Santangelo S, Mancini E, Yanovsky MJ. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:889-902. [PMID: 32314836 DOI: 10.1111/tpj.14776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.
Collapse
Affiliation(s)
- Andrés Romanowski
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Rubén G Schlaen
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Soledad Perez-Santangelo
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Estefanía Mancini
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
7
|
Wang L, Yang T, Lin Q, Wang B, Li X, Luan S, Yu F. Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:26. [PMID: 31948398 PMCID: PMC6966814 DOI: 10.1186/s12870-019-2223-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The receptor-like kinase FEROINA (FER) plays a crucial role in controlling plant vegetative growth partially by sensing the rapid alkalinization factor (RALF) peptide. However, the role of RALF1-FER in the vegetative-reproductive growth transition remains unknown. Here, we analyze the mechanism through which FER affects the flowering time in Arabidopsis. RESULTS We found that the FER mRNA levels exhibit an oscillating pattern with a diurnal rhythm and that the clock oscillator CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) up-regulates the expression of FER by associating with its chromatin. In addition, FER expression is regulated by clock genes, and FER also modulates the expression patterns of clock genes. Consistent with its gene expression pattern, FER positively regulates flowering by modulating the transcript accumulation and mRNA alternative splicing of certain flowering-related genes, including FLOWERING LOCUS C (FLC) and its homolog MADS AFFECTING FLOWERING (MAF). However, the RALF1 ligand negatively regulates flowering compared with FER. CONCLUSIONS We found that FER, which is up-regulated by CCA1, controls the flowering time by regulating the transcript accumulation and mRNA alternative splicing (AS) of some important flowering genes, and these findings link FER to the floral transition.
Collapse
Affiliation(s)
- Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, People's Republic of China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China.
| | - Bingqian Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, People's Republic of China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
8
|
Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators. Proc Natl Acad Sci U S A 2019; 116:8060-8069. [PMID: 30923114 DOI: 10.1073/pnas.1806541116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HISTONE MONOUBIQUITINATION1 (HUB1) and its paralog HUB2 act in a conserved heterotetrameric complex in the chromatin-mediated transcriptional modulation of developmental programs, such as flowering time, dormancy, and the circadian clock. The KHD1 and SPEN3 proteins were identified as interactors of the HUB1 and HUB2 proteins with in vitro RNA-binding activity. Mutants in SPEN3 and KHD1 had reduced rosette and leaf areas. Strikingly, in spen3 mutants, the flowering time was slightly, but significantly, delayed, as opposed to the early flowering time in the hub1-4 mutant. The mutant phenotypes in biomass and flowering time suggested a deregulation of their respective regulatory genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and FLOWERING LOCUS C (FLC) that are known targets of the HUB1-mediated histone H2B monoubiquitination (H2Bub). Indeed, in the spen3-1 and hub1-4 mutants, the circadian clock period was shortened as observed by luciferase reporter assays, the levels of the CCA1α and CCA1β splice forms were altered, and the CCA1 expression and H2Bub levels were reduced. In the spen3-1 mutant, the delay in flowering time was correlated with an enhanced FLC expression, possibly due to an increased distal versus proximal ratio of its antisense COOLAIR transcript. Together with transcriptomic and double-mutant analyses, our data revealed that the HUB1 interaction with SPEN3 links H2Bub during transcript elongation with pre-mRNA processing at CCA1 Furthermore, the presence of an intact HUB1 at the FLC is required for SPEN3 function in the formation of the FLC-derived antisense COOLAIR transcripts.
Collapse
|
9
|
Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biol 2017; 15:80. [PMID: 28893254 PMCID: PMC5594616 DOI: 10.1186/s12915-017-0422-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Similar to other eukaryotes, splicing is emerging as an important process affecting development and stress tolerance in plants. Ski-interacting protein (SKIP), a splicing factor, is essential for circadian clock function and abiotic stress tolerance; however, the mechanisms whereby it regulates flowering time are unknown. Results In this study, we found that SKIP is required for the splicing of serratedleaves and early flowering (SEF) pre-messenger RNA (mRNA), which encodes a component of the ATP-dependent SWR1 chromatin remodeling complex (SWR1-C). Defects in the splicing of SEF pre-mRNA reduced H2A.Z enrichment at FLC, MAF4, and MAF5, suppressed the expression of these genes, and produced an early flowering phenotype in skip-1 plants. Conclusions Our findings indicate that SKIP regulates SWR1-C function via alternative splicing to control the floral transition in Arabidopsis thaliana. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0422-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aizi Tong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiqiong Huo
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiqiang Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weiqi Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xianli Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Xue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Wang G, Weng L, Li M, Xiao H. Response of Gene Expression and Alternative Splicing to Distinct Growth Environments in Tomato. Int J Mol Sci 2017; 18:E475. [PMID: 28257093 PMCID: PMC5372491 DOI: 10.3390/ijms18030475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity is the phenomenon that one particular genotype produces different phenotypes under different environmental conditions, but its underlying molecular and genetic mechanisms are poorly understood. Plastic traits may be under the control of genes whose expression is modulated by environmental cues. In this study, we investigated phenotypic plasticity in tomato (Solanum lycopersicum) and its ancestral species S. pimpinellifolium by comparing the global gene expression of young seedlings grown under two distinct growth conditions. Our results show that more than 7000 genes exhibited differential expression in response to environmental changes from phytotron to a plastic greenhouse, and 98 environmentally sensitive genes displayed the same patterns of expression response across the two tomato species. We also found that growth conditions had a remarkable impact on transcriptome complexity, attributable to alternative splicing (AS), in which 665 splice variants showed differential expression in response to the environmental changes. Moreover, more splice variants and AS events per gene were detected in plastic greenhouse-grown seedlings than their phytotron counterparts, and these seedlings also had higher percentages of intron retention events. The identification of the conserved environmentally-sensitive genes and the splice variants in this study will be useful for further analysis of gene regulation of environmental response in tomato and other crops.
Collapse
Affiliation(s)
- Guixiang Wang
- University of Chinese Academy of Sciences, 19A Yuquan Rd., Beijing 100049, China.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
11
|
Zhang H, Lin C, Gu L. Light Regulation of Alternative Pre-mRNA Splicing in Plants. Photochem Photobiol 2017; 93:159-165. [PMID: 27925216 DOI: 10.1111/php.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/20/2016] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) is a major post-transcriptional mechanism to enhance the diversity of proteome in response to environmental signals. Among the numerous external signals perceived by plants, light is the most crucial one. Plants utilize complex photoreceptor signaling networks to sense different light conditions and adjust their growth and development accordingly. Although light-mediated gene expression has been widely investigated, little is known regarding the mechanism of light affecting AS to modulate mRNA at the post-transcriptional level. In this minireview, we summarize current progresses on how light affects AS, and how sensory photoreceptors and retrograde signaling pathways may coordinately regulate AS of pre-mRNAs. In addition, we also discuss the possibility that AS of the mRNAs encoding photoreceptors may be involved in feedback control of AS. We hypothesize that light regulation of the expression and activity of splicing factors would be a major mechanism of light-mediated AS. The combination of genetic study and high-throughput analyses of AS and splicing complexes in response to light is likely to further advance our understanding of the molecular mechanisms underlying light control of AS and plant development.
Collapse
Affiliation(s)
- Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Yi H, Li X, Lee SH, Nou IS, Lim YP, Hur Y. Natural variation in CIRCADIAN CLOCK ASSOCIATED 1 is associated with flowering time in Brassica rapa. Genome 2016; 60:402-413. [PMID: 28177832 DOI: 10.1139/gen-2016-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flowering time is a very important agronomic trait and the development of molecular markers associated with this trait can facilitate crop breeding. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a core oscillator component of circadian rhythms that affect metabolic pathways in plants, has been implicated in flowering time control in species of Brassica. CCA1 gene sequences from three Brassica rapa inbred lines, showing either early flowering or late flowering phenotypes, were analyzed and a high level of sequence variation was identified, especially within the fourth intron. Using this information, three PCR primer sets were designed and tested using various inbred lines of B. rapa. The usage of InDel markers was further validated by evaluation of flowering time and high resolution melting (HRM) analysis. Both methods, PCR and HRM, validated the use of newly developed markers. Additional sequence analyses of Brassica plants with diploid (AA, BB, or CC) and allotetraploid genomes further confirmed a large number of sequence polymorphisms in the CCA1 gene, including insertions/deletions in the fourth intron. Our results demonstrated that sequence variations in CCA1 can be used to develop valuable trait-related molecular markers for Brassica crop breeding.
Collapse
Affiliation(s)
- Hankuil Yi
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xiaonan Li
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea.,d Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Seong Ho Lee
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Ill-Sup Nou
- c Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Yong Pyo Lim
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Yoonkang Hur
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
13
|
Nolte C, Staiger D. RNA around the clock - regulation at the RNA level in biological timing. FRONTIERS IN PLANT SCIENCE 2015; 6:311. [PMID: 25999975 PMCID: PMC4419606 DOI: 10.3389/fpls.2015.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.
Collapse
Affiliation(s)
| | - Dorothee Staiger
- *Correspondence: Dorothee Staiger, Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Universitaetsstrasse 25, Bielefeld D-33615, Germany
| |
Collapse
|
14
|
Shim JS, Imaizumi T. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry 2014; 54:157-70. [PMID: 25346271 PMCID: PMC4303289 DOI: 10.1021/bi500922q] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many of the developmental responses
and behaviors in plants that
occur throughout the year are controlled by photoperiod; among these,
seasonal flowering is the most characterized. Molecular genetic and
biochemical analyses have revealed the mechanisms by which plants
sense changes in day length to regulate seasonal flowering. In Arabidopsis thaliana, induction of the expression of a florigen,
FLOWERING LOCUS T (FT) protein, is a major output of the photoperiodic
flowering pathway. The circadian clock coordinates the expression
profiles and activities of the components in this pathway. Light-dependent
control of CONSTANS (CO) transcription factor activity is a crucial
part of the induction of the photoperiodic expression of FT. CO protein is stabilized only in the long day afternoon, which
is when FT is induced. In this review, we summarize
recent progress in the determination of the molecular architecture
of the circadian clock and mechanisms underlying photoperiodic flowering.
In addition, we introduce the molecular mechanisms of other biological
processes, such as hypocotyl growth and reactive oxygen species production,
which are also controlled by alterations in photoperiod.
Collapse
Affiliation(s)
- Jae Sung Shim
- Department of Biology, University of Washington , Seattle, Washington 98195-1800, United States
| | | |
Collapse
|