1
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
2
|
Moroney JV, Long BM, McCormick AJ, Raven JA. Special issue on inorganic carbon concentrating mechanisms. PHOTOSYNTHESIS RESEARCH 2023; 156:179-180. [PMID: 37067630 DOI: 10.1007/s11120-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Benedict M Long
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
3
|
Wang H, Hayer-Hartl M. Phase Separation of Rubisco by the Folded SSUL Domains of CcmM in Beta-Carboxysome Biogenesis. Methods Mol Biol 2023; 2563:269-296. [PMID: 36227479 DOI: 10.1007/978-1-0716-2663-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carboxysomes are large, cytosolic bodies present in all cyanobacteria and many proteobacteria that function as the sites of photosynthetic CO2 fixation by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The carboxysome lumen is enriched with Rubisco and carbonic anhydrase (CA). The polyhedral proteinaceous shell allows the passage of HCO3- ions into the carboxysome, where they are converted to CO2 by CA. Thus, the carboxysome functions as a CO2-concentrating mechanism (CCM), enhancing the efficiency of Rubisco in CO2 fixation. In β-cyanobacteria, carboxysome biogenesis first involves the aggregation of Rubisco by CcmM, a scaffolding protein that exists in two isoforms. Both isoforms contain a minimum of three Rubisco small subunit-like (SSUL) domains, connected by flexible linkers. Multivalent interaction between these linked SSUL domains with Rubisco results in phase separation and condensate formation. Here, we use Rubisco and the short isoform of CcmM (M35) of the β-cyanobacterium Synechococcus elongatus PCC7942 to describe the methods used for in vitro analysis of the mechanism of condensate formation driven by the SSUL domains. The methods include turbidity assays, bright-field and fluorescence microscopy, as well as transmission electron microscopy (TEM) in both negative staining and cryo-conditions.
Collapse
Affiliation(s)
- Huping Wang
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Membrane Protein Biosynthesis and Quality Control, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Muth-Pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro EM. Patterning of the Autotrophic, Mixotrophic, and Heterotrophic Proteomes of Oxygen-Evolving Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2022; 13:891895. [PMID: 35694301 PMCID: PMC9175036 DOI: 10.3389/fmicb.2022.891895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomes of an oxygenic photosynthetic cyanobacterium, Synechocystis sp. PCC 6803, were analyzed under photoautotrophic (low and high CO2, assigned as ATLC and ATHC), photomixotrophic (MT), and light-activated heterotrophic (LAH) conditions. Allocation of proteome mass fraction to seven sub-proteomes and differential expression of individual proteins were analyzed, paying particular attention to photosynthesis and carbon metabolism–centered sub-proteomes affected by the quality and quantity of the carbon source and light regime upon growth. A distinct common feature of the ATHC, MT, and LAH cultures was low abundance of inducible carbon-concentrating mechanisms and photorespiration-related enzymes, independent of the inorganic or organic carbon source. On the other hand, these cells accumulated a respiratory NAD(P)H dehydrogenase I (NDH-11) complex in the thylakoid membrane (TM). Additionally, in glucose-supplemented cultures, a distinct NDH-2 protein, NdbA, accumulated in the TM, while the plasma membrane-localized NdbC and terminal oxidase decreased in abundance in comparison to both AT conditions. Photosynthetic complexes were uniquely depleted under the LAH condition but accumulated under the ATHC condition. The MT proteome displayed several heterotrophic features typical of the LAH proteome, particularly including the high abundance of ribosome as well as amino acid and protein biosynthesis machinery-related components. It is also noteworthy that the two equally light-exposed ATHC and MT cultures allocated similar mass fractions of the total proteome to the seven distinct sub-proteomes. Unique trophic condition-specific expression patterns were likewise observed among individual proteins, including the accumulation of phosphate transporters and polyphosphate polymers storing energy surplus in highly energetic bonds under the MT condition and accumulation under the LAH condition of an enzyme catalyzing cyanophycin biosynthesis. It is concluded that the rigor of cell growth in the MT condition results, to a great extent, by combining photosynthetic activity with high intracellular inorganic carbon conditions created upon glucose breakdown and release of CO2, besides the direct utilization of glucose-derived carbon skeletons for growth. This combination provides the MT cultures with excellent conditions for growth that often exceeds that of mere ATHC.
Collapse
|
5
|
Tang J, Zhou H, Yao D, Riaz S, You D, Klepacz-Smółka A, Daroch M. Comparative Genomic Analysis Revealed Distinct Molecular Components and Organization of CO 2-Concentrating Mechanism in Thermophilic Cyanobacteria. Front Microbiol 2022; 13:876272. [PMID: 35602029 PMCID: PMC9120777 DOI: 10.3389/fmicb.2022.876272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cyanobacteria evolved an inorganic carbon-concentrating mechanism (CCM) to perform effective oxygenic photosynthesis and prevent photorespiratory carbon losses. This process facilitates the acclimation of cyanobacteria to various habitats, particularly in CO2-limited environments. To date, there is limited information on the CCM of thermophilic cyanobacteria whose habitats limit the solubility of inorganic carbon. Here, genome-based approaches were used to identify the molecular components of CCM in 17 well-described thermophilic cyanobacteria. These cyanobacteria were from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. All the strains belong to β-cyanobacteria based on their β-carboxysome shell proteins with 1B form of Rubisco. The diversity in the Ci uptake systems and carboxysome composition of these thermophiles were analyzed based on their genomic information. For Ci uptake systems, two CO2 uptake systems (NDH-13 and NDH-14) and BicA for HCO3– transport were present in all the thermophilic cyanobacteria, while most strains did not have the Na+/HCO3– Sbt symporter and HCO3– transporter BCT1 were absent in four strains. As for carboxysome, the β-carboxysomal shell protein, ccmK2, was absent only in Thermoleptolyngbya strains, whereas ccmK3/K4 were absent in all Thermostichus and Thermosynechococcus strains. Besides, all Thermostichus and Thermosynechococcus strains lacked carboxysomal β-CA, ccaA, the carbonic anhydrase activity of which may be replaced by ccmM proteins as indicated by comparative domain analysis. The genomic distribution of CCM-related genes was different among the thermophiles, suggesting probably distinct expression regulation. Overall, the comparative genomic analysis revealed distinct molecular components and organization of CCM in thermophilic cyanobacteria. These findings provided insights into the CCM components of thermophilic cyanobacteria and fundamental knowledge for further research regarding photosynthetic improvement and biomass yield of thermophilic cyanobacteria with biotechnological potentials.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
6
|
Zang K, Wang H, Hartl FU, Hayer-Hartl M. Scaffolding protein CcmM directs multiprotein phase separation in β-carboxysome biogenesis. Nat Struct Mol Biol 2021; 28:909-922. [PMID: 34759380 PMCID: PMC8580825 DOI: 10.1038/s41594-021-00676-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022]
Abstract
Carboxysomes in cyanobacteria enclose the enzymes Rubisco and carbonic anhydrase to optimize photosynthetic carbon fixation. Understanding carboxysome assembly has implications in agricultural biotechnology. Here we analyzed the role of the scaffolding protein CcmM of the β-cyanobacterium Synechococcus elongatus PCC 7942 in sequestrating the hexadecameric Rubisco and the tetrameric carbonic anhydrase, CcaA. We find that the trimeric CcmM, consisting of γCAL oligomerization domains and linked small subunit-like (SSUL) modules, plays a central role in mediation of pre-carboxysome condensate formation through multivalent, cooperative interactions. The γCAL domains interact with the C-terminal tails of the CcaA subunits and additionally mediate a head-to-head association of CcmM trimers. Interestingly, SSUL modules, besides their known function in recruiting Rubisco, also participate in intermolecular interactions with the γCAL domains, providing further valency for network formation. Our findings reveal the mechanism by which CcmM functions as a central organizer of the pre-carboxysome multiprotein matrix, concentrating the core components Rubisco and CcaA before β-carboxysome shell formation.
Collapse
Affiliation(s)
- Kun Zang
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Huping Wang
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
7
|
Müller S, Zavřel T, Červený J. Towards a quantitative assessment of inorganic carbon cycling in photosynthetic microorganisms. Eng Life Sci 2019; 19:955-967. [PMID: 32624985 PMCID: PMC6999069 DOI: 10.1002/elsc.201900061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic organisms developed various strategies to mitigate high light stress. For instance, aquatic organisms are able to spend excessive energy by exchanging dissolved CO2 (dCO2) and bicarbonate ( HCO 3 - ) with the environment. Simultaneous uptake and excretion of the two carbon species is referred to as inorganic carbon cycling. Often, inorganic carbon cycling is indicated by displacements of the extracellular dCO2 signal from the equilibrium value after changing the light conditions. In this work, we additionally use (i) the extracellular pH signal, which requires non- or weakly-buffered medium, and (ii) a dynamic model of carbonate chemistry in the aquatic environment to detect and quantitatively describe inorganic carbon cycling. Based on simulations and experiments in precisely controlled photobioreactors, we show that the magnitude of the observed dCO2 displacement crucially depends on extracellular pH level and buffer concentration. Moreover, we find that the dCO2 displacement can also be caused by simultaneous uptake of both dCO2 and HCO 3 - (no inorganic carbon cycling). In a next step, the dynamic model of carbonate chemistry allows for a quantitative assessment of cellular dCO2, HCO 3 - , and H+ exchange rates from the measured dCO2 and pH signals. Limitations of the method are discussed.
Collapse
Affiliation(s)
- Stefan Müller
- Faculty of MathematicsUniversity of ViennaWienAustria
| | - Tomáš Zavřel
- Department of Adaptive BiotechnologiesGlobal Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| | - Jan Červený
- Department of Adaptive BiotechnologiesGlobal Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
8
|
Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc Natl Acad Sci U S A 2017; 115:403-408. [PMID: 29279392 DOI: 10.1073/pnas.1716062115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.
Collapse
|
9
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
10
|
Griffiths H, Meyer MT, Rickaby REM. Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3689-3695. [PMID: 28911058 PMCID: PMC5853259 DOI: 10.1093/jxb/erx278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | | |
Collapse
|