1
|
Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. ANNALS OF BOTANY 2023; 131:723-736. [PMID: 36848247 PMCID: PMC10147333 DOI: 10.1093/aob/mcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.
Collapse
Affiliation(s)
- Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Li Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Timothy M Garant
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yu-Xuan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Owen Rowland
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
2
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
3
|
Pagano A, Zannino L, Pagano P, Doria E, Dondi D, Macovei A, Biggiogera M, Araújo SDS, Balestrazzi A. Changes in genotoxic stress response, ribogenesis and PAP (3'-phosphoadenosine 5'-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds. PLANT, CELL & ENVIRONMENT 2022; 45:1457-1473. [PMID: 35188276 PMCID: PMC9311706 DOI: 10.1111/pce.14295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/06/2023]
Abstract
Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Paola Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Daniele Dondi
- Department of ChemistryUniversity of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Susana de Sousa Araújo
- Association BLC3‐Technology and Innovation CampusCentre Bio R&D UnitMacedo de CavaleirosPortugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| |
Collapse
|
4
|
Peng L, Huang X, Qi M, Pritchard HW, Xue H. Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. FRONTIERS IN PLANT SCIENCE 2022; 13:1029997. [PMID: 36420023 PMCID: PMC9677110 DOI: 10.3389/fpls.2022.1029997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 05/13/2023]
Abstract
Germplasm conservation strongly depends on the desiccation tolerance (DT) of seeds. Xerophytic seeds have strong desiccation resistance, which makes them excellent models to study DT. Although some experimental strategies have been applied previously, most methods are difficult to apply to xerophytic seeds. In this review, we attempted to synthesize current strategies for the study of seed DT and provide an in-depth look at Caragana korshinskii as an example. First, we analyze congenital advantages of xerophytes in the study of seed DT. Second, we summarize several strategies used to study DT and illustrate a suitable strategy for xerophytic species. Then, based on our previous studies work with C. korshinskii, a feasible technical strategy for DT re-establishment is provided and we provide illustrate some special molecular mechanisms seen in xerophytic seeds. Finally, several steps to unveil the DT mechanism of xerophytic seeds are suggested, and three scientific questions that the field should consider are listed. We hope to optimize and utilize this strategy for more xerophytic species to more systematically decipher the physiological and molecular processes of seed DT and provide more candidate genes for molecular breeding.
Collapse
Affiliation(s)
- Long Peng
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Huang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hugh W. Pritchard
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
- Royal Botanic Gardens, Kew, Wakehurst, West Sussex, United Kingdom
| | - Hua Xue
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Hua Xue,
| |
Collapse
|
5
|
Zhang Y, Ming R, Khan M, Wang Y, Dahro B, Xiao W, Li C, Liu J. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:183-200. [PMID: 34510677 PMCID: PMC8710834 DOI: 10.1111/pbi.13705] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 05/22/2023]
Abstract
Plant ethylene-responsive factors (ERFs) play essential roles in cold stress response, but the molecular mechanisms underlying this process remain poorly understood. In this study, we characterized PtrERF9 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-hardy plant. PtrERF9 was up-regulated by cold in an ethylene-dependent manner. Overexpression of PtrERF9 conferred prominently enhanced freezing tolerance, which was drastically impaired when PtrERF9 was knocked down by virus-induced gene silencing. Global transcriptome profiling indicated that silencing of PtrERF9 resulted in substantial transcriptional reprogramming of stress-responsive genes involved in different biological processes. PtrERF9 was further verified to directly and specifically bind with the promoters of glutathione S-transferase U17 (PtrGSTU17) and ACC synthase1 (PtrACS1). Consistently, PtrERF9-overexpressing plants had higher levels of PtrGSTU17 transcript and GST activity, but accumulated less ROS, whereas the silenced plants showed the opposite changes. Meanwhile, knockdown of PtrERF9 decreased PtrACS1 expression, ACS activity and ACC content. However, overexpression of PtrERF9 in lemon, a cold-sensitive species, caused negligible alterations of ethylene biosynthesis, which was attributed to perturbed interaction between PtrERF9, along with lemon homologue ClERF9, and the promoter of lemon ACS1 gene (ClACS1) due to mutation of the cis-acting element. Taken together, these results indicate that PtrERF9 acts downstream of ethylene signalling and functions positively in cold tolerance via modulation of ROS homeostasis by regulating PtrGSTU17. In addition, PtrERF9 regulates ethylene biosynthesis by activating PtrACS1 gene, forming a feedback regulation loop to reinforce the transcriptional regulation of its target genes, which may contribute to the elite cold tolerance of Poncirus trifoliata.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Madiha Khan
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yue Wang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Wei Xiao
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Chunlong Li
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ji‐Hong Liu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Functional characterization of an unobtrusive protein, CkMT4, in re-establishing desiccation tolerance in germinating seeds. Int J Biol Macromol 2021; 173:180-192. [PMID: 33482205 DOI: 10.1016/j.ijbiomac.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
Desiccation tolerance (DT) is gradually lost during seed germination, while it can be re-established by pre-treatment with polyethylene glycol (PEG) and/or abscisic acid (ABA). Increasing knowledge is available on several stress-related proteins in DT re-establishment in herb seeds, but limited information exists on novel proteins in wood seeds. This study aimed to investigate the role of metallothionein CkMT4, a protein species with the highest fold increase in abundance in Caragana korshinskii seeds on PEG treatment. The fluctuation in mRNA levels of CkMT4 during seed development was consistent with the changes in DT, and the expression of CkMT4 could be up-regulated by ABA. Besides metal-binding capacity, CkMT4 might supply Cu2+/Zn2+ to superoxide dismutase (SOD) under high redox potential provided by PEG treatment for excess reactive oxygen species (ROS) scavenging. The overexpression of CkMT4 in yeast results in enhanced oxidation resistance. Experimentally, this study demonstrated the overexpression of CkMT4 in Arabidopsis seeds benefited the re-establishment of DT and enhanced the activity of SOD. On the whole, these findings suggested that CkMT4 facilitated the re-establishment of DT in C. korshinskii seeds mainly through diminishing excess ROS, which put the mechanism underlying the re-establishment of DT in xerophytic wood seeds into a new perspective.
Collapse
|
7
|
Timing for antioxidant-priming against rice seed ageing: optimal only in non-resistant stage. Sci Rep 2020; 10:13294. [PMID: 32764704 PMCID: PMC7411016 DOI: 10.1038/s41598-020-70189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
Seed deterioration due to ageing strongly affects both germplasm preservation and agricultural production. Decelerating seed deterioration and boosting seed viability become increasingly urgent. The loss of seed viability is inevitable even under cold storage. For species with short-lived seed or for regions with poor preservation infrastructure where cold storage is not readily available, seed enhancement is more reliable to increase seed viability and longevity. Antioxidant priming as a way of seed enhancement usually improves seed germination. As for post-priming survival, however, significant uncertainty exists. The controversy lies particularly on seeds of high germination percentage (GP > 95%) whose viability is hardly improvable and the benefits of priming depend on prolonging seed longevity. Therefore, this study timed antioxidant priming to prolong the longevity of high-viability seeds under artificially accelerated ageing (AAA). Rice (Nipponbare) seeds (GP > 97%) under room-temperature-storage (RTS) for 6 months. were resistant to AAA first with little viability loss for a certain period, the resistant stage. This resistance gradually vanished without GP change, during a prolonged RTS period which was named the vulnerable stage. According to the results, although antioxidant priming severely curtailed the resistant stage for seeds with a long plateau in the survival curve, it decelerated viability loss for seeds in the vulnerable stage. In complement to seed storage, priming potentially retains high seed GP which would decrease without seed enhancement. To maximize the benefits of priming for high-GP seeds, two time points are advised as the start of a time window for priming: (1) just at the end of the resistant stage without notable viability loss, which is hard to grasp by GP monitoring; (2) slight but identifiable GP decline.
Collapse
|
8
|
Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C. Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:165-174. [PMID: 32172758 DOI: 10.1071/fp18219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.
Collapse
Affiliation(s)
- Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaoran Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengmeng Tang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kai Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
9
|
He Y, Xue H, Li Y, Wang X. Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5141-5155. [PMID: 30053069 PMCID: PMC6184755 DOI: 10.1093/jxb/ery270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.
Collapse
Affiliation(s)
- Yuqi He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Hua Xue
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Xiaofeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| |
Collapse
|
10
|
iTRAQ-based quantitative proteomic analysis reveals pathways associated with re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. J Proteomics 2018; 179:1-16. [DOI: 10.1016/j.jprot.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 01/04/2023]
|
11
|
Xu LX, Lin YX, Wang LH, Zhou YC. Dehiscence method: a seed-saving, quick and simple viability assessment in rice. PLANT METHODS 2018; 14:68. [PMID: 30116291 PMCID: PMC6085679 DOI: 10.1186/s13007-018-0334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Seed viability monitoring is very important in ex situ germplasm preservation to detect germplasm deterioration. This requires seed-, time- and labor- saving methods with high precision to assess seed germination as viability. Although the current non-invasive, rapid, sensing methods (NRSs) are time- and labor-saving, they lack the precision and simplicity which are the virtues of traditional germination. Moreover, they consume a considerable amount of seeds to adjust sensed signals to germination percentage, which disregards the seed-saving objective. This becomes particularly severe for rare or endangered species whose seeds are already scarce. Here we propose a new method that is precise, low-invasive, simple, and quick, which involves analyzing the pattern of dehiscence (seed coat rupture), followed by embryonic protrusion. RESULTS Dehiscence proved simple to identify. After the trial of 20 treatments from 3 rice varieties, we recognized that dehiscence percentage at the 48th hour of germination (D(48)) correlates significantly with germination rate for tested seed lots. In addition, we found that the final germination percentage corresponded to D(48) plus 5. More than 70% of the seeds survived post-dehiscence desiccation for storage. Hydrogen peroxide (1 mM) as the solution for imbibition could further improve the survival. The method also worked quicker than tetrazolium which is honored as a fast, traditional method, in detecting less vigorous but viable seeds. CONCLUSION We demonstrated the comprehensive virtues of dehiscence method in assessing rice seed: it is more precise and easier to use than NRSs and is faster and more seed-saving than traditional methods. We anticipate modifications including artificial intelligence to extend our method to increasingly diverse circumstances and species.
Collapse
Affiliation(s)
- Ling-xiang Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002 People’s Republic of China
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Yi-xin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002 People’s Republic of China
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Li-hong Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 People’s Republic of China
| | - Yuan-chang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002 People’s Republic of China
| |
Collapse
|