1
|
Cheng JL, Wei XP, Chen Y, Qi YD, Zhang BG, Liu HT. Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis. Funct Integr Genomics 2023; 23:344. [PMID: 37991590 DOI: 10.1007/s10142-023-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.
Collapse
Affiliation(s)
- Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ávila-Hernández JG, Cárdenas-Aquino MDR, Camas-Reyes A, Martínez-Antonio A. Sex determination in papaya: Current status and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111814. [PMID: 37562730 DOI: 10.1016/j.plantsci.2023.111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Papaya (Carica papaya L.) is an economically significant plant that produces fruit consumed worldwide due to its organoleptic characteristics. Since their commercial production, papaya fruits have faced several problems, such as pests, which have been partly resolved using transgenic varieties. Nevertheless, a principal challenge in this cultivation is the plant's sex determination. The sex issue in papaya is complex because papaya flowers can bear three sex forms: male, female, and hermaphrodite, which affects their fruit production, shape, and yield. Fruits from hermaphrodite plants are preferred more by consumers than female ones, and male plants rarely produce fruits without commercial value. Chromosomes are responsible for sex determination in papaya, denoted as XY for male, XX for female, and XYh for hermaphrodite. However, genes related to sex have been reported but are not conclusive. Factors such as the environment, hormones, and genetic and epigenetic background can also affect sex expression. Therefore, in this review, we will discuss recent research on the sex of papaya, from reported genes to date, their biology, and sexing approaches using molecular markers and their advantages.
Collapse
Affiliation(s)
- José Guadalupe Ávila-Hernández
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - María Del Rosario Cárdenas-Aquino
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - Alberto Camas-Reyes
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico..
| |
Collapse
|
3
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
4
|
Attia Z, Pogoda C, Vergara D, Kane NC. Mitochondrial genomes do not appear to regulate flowering pattern/reproductive strategy in Cannabis sativa. AOB PLANTS 2022; 14:plab068. [PMID: 35558164 PMCID: PMC9089828 DOI: 10.1093/aobpla/plab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/05/2021] [Indexed: 06/15/2023]
Abstract
Currently, the amount of genetic data for Cannabis is lacking due to the illegal nature of the plant. Our study used 73 Cannabis sativa whole-genome shotgun libraries to reveal eight different mtDNA haplotypes. The most common haplotype contained 60 of the 73 samples studied and was composed of only dioecious individuals. However, other haplotypes contained a mix of both mating strategies (i.e. monoecious and dioecious). From these haplotype groupings we further examined the fully annotated mitochondrial genomes of four hemp individuals with different mt haplotypes and recorded gene content, copy number variation and synteny. Our results revealed highly syntenic mitochondrial genomes that contained ~60 identifiable sequences for protein-coding genes, tRNAs and rRNAs and no obvious rearrangements or chimeric genes. We found no clear evidence that modern reproductive patterns are due to simple cytoplasmic male sterility mutations. It is likely the interaction between nuclear genetic components and the X/Y sex chromosomes that determines reproductive strategy. Additionally, we added 50 % more mitochondrial genomes to the publicly available repository.
Collapse
Affiliation(s)
- Ziv Attia
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Cloe Pogoda
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Daniela Vergara
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Nolan C Kane
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| |
Collapse
|
5
|
Cascales J, Acevedo RM, Paiva DI, Gottlieb AM. Differential DNA methylation and gene expression during development of reproductive and vegetative organs in Ilex species. JOURNAL OF PLANT RESEARCH 2021; 134:559-575. [PMID: 33759060 DOI: 10.1007/s10265-021-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Differential epigenetic (DNA cytosine methylation) and gene expression patterns were investigated in reproductive and vegetative organs from Ilex paraguariensis and I. dumosa, at distinct developmental stages. We aimed at contributing towards elucidating major molecular changes underlying the sexual differentiation processes which, in these dioecious species, are completely unknown. Simultaneously, as a first step towards the development of an early sexing system, we searched for promising molecular markers. This was assessed through Methylation Sensitive Amplified Polymorphism (MSAP) and Amplified Fragment Length Polymorphism on cDNA (cDNA-AFLP) techniques, applying discriminant multivariate analyses, and bioinformatic characterization of differential fragments. A significant positive correlation was found between epigenetic and indirect 'genetic' information for both species, indicating influence of the genetic background on the epigenetic variation. Higher epigenetic than genetic diversities were estimated. Our outcomes showed up to 1.86 times more representation of mCG subepiloci than mCCG in all organs sampled. Along the maturing stages of floral buds, the frequency of mCG evidenced an incremental trend, whereas mCCG and unmethylated conditions showed opposite tendencies. Reproductive and vegetative samples tended to cluster apart based on epigenetic patterns; at gene expression level, organs exhibited clear-cut distinctive patterns, nonetheless profiles of young leaves and floral primordia resemble. Epigenetic and expression data allowed discrimination of I. dumosa´s samples according to the gender of the donor; more elusive patterns were observed for I. paraguariensis. In total, 102 differentially methylated and expressed fragments were characterized bioinformatically. Forty-three were annotated in various functional categories; four candidate markers were validated through qPCR, finding statistical differences among organs but not among sexes. The methylation condition of epilocus C13m33 appears as indicative of gender in both species. Thirty-three organ-specific and 34 gender-specific methylated markers were discriminated and deserve further research, particularly those expressed in leaves. Our study contributes concrete candidate markers with potential for practical application.
Collapse
Affiliation(s)
- Jimena Cascales
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Raúl Maximiliano Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE, UNNE-CONICET), Universidad Nacional del Nordeste, Sargento Juan Bautista Cabral 2131, Corrientes, W3402BKG, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Daniela Ivana Paiva
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Montecarlo (INTA EEA Montecarlo), Av. El Libertador 2472, Misiones, N3384, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Alexandra Marina Gottlieb
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina.
| |
Collapse
|
6
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
7
|
Barcaccia G, Palumbo F, Scariolo F, Vannozzi A, Borin M, Bona S. Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:573299. [PMID: 33101342 PMCID: PMC7546024 DOI: 10.3389/fpls.2020.573299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 05/12/2023]
Abstract
Cannabis (Cannabis sativa L.) is an influential yet controversial agricultural plant with a very long and prominent history of recreational, medicinal, and industrial usages. Given the importance of this species, we deepened some of the main challenges-along with potential solutions-behind the breeding of new cannabis cultivars. One of the main issues that should be fixed before starting new breeding programs is the uncertain taxonomic classification of the two main taxa (e.g., indica and sativa) of the Cannabis genus. We tried therefore to examine this topic from a molecular perspective through the use of DNA barcoding. Our findings seem to support a unique species system (C. sativa) based on two subspecies: C. sativa subsp. sativa and C. sativa subsp. indica. The second key issue in a breeding program is related to the dioecy behavior of this species and to the comprehension of those molecular mechanisms underlying flower development, the main cannabis product. Given the role of MADS box genes in flower identity, we analyzed and reorganized all the genomic and transcriptomic data available for homeotic genes, trying to decipher the applicability of the ABCDE model in Cannabis. Finally, reviewing the limits of the conventional breeding methods traditionally applied for developing new varieties, we proposed a new breeding scheme for the constitution of F1 hybrids, without ignoring the indisputable contribution offered by genomics. In this sense, in parallel, we resumed the main advances in the genomic field of this species and, ascertained the lack of a robust set of SNP markers, provided a discriminant and polymorphic panel of SSR markers as a valuable tool for future marker assisted breeding programs.
Collapse
|