1
|
Osman AM, Ali AM, Sayed HA, Atta H, Ahmed S, Alieldin N, Abdelhamed MA, Saad K, Shibl A. Cognitive performance and brain volume among survivors of pediatric hematological malignancies: a case-control study. Clin Transl Oncol 2024:10.1007/s12094-024-03646-7. [PMID: 39133385 DOI: 10.1007/s12094-024-03646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Cognitive dysfunction may be one of the hazardous late effects among survivors of pediatric hematological malignancies. Our study aimed to explore cognitive performance and assess the global and regional brain volume changes in survivors of hematological malignancies. METHODS This case-control study was conducted on 68 survivors of hematological malignancies, with a median follow-up period of 2 years (ranging from 1 to 6.2 years). Stanford-Binet Test was used for cognitive assessment. A quantitative volumetric assessment of the brain was done using the NeuroQuant Brain Magnetic Resonance. Age and sex-matched 68 children were selected as a comparison group. RESULTS Cancer survivors showed significantly lower levels of IQ and their subtests than the control group. Global brain atrophy was observed in the majority of the survivors. Many risk factors significantly affected different IQ subtests, such as radiotherapy (RTH), high cumulative doses of methotrexate (MTX), and prednisone. At the same time, low white matter volume (WMV) was observed with higher cumulative doses of MTX and anthracyclines. CONCLUSIONS Hematological malignancies have a negative impact on cognition. Neurocognitive impairment and related brain changes were evident in those who received RTH, HDMTX, or high cumulative doses of steroids.
Collapse
Affiliation(s)
- Amira M Osman
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amany M Ali
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Heba A Sayed
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Haisam Atta
- Radiology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Shimaa Ahmed
- Department of Radiation Oncology and Nuclear Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nelly Alieldin
- Department of Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Abdelhamed
- Neuropsychiatric Department, and Neuroepidemiology Lab, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University Children's Hospital, Assiut University Campus, Assiut, 71111, Egypt.
| | - Azza Shibl
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Ansari N, Salesi M. The association between primary Sjogren's syndrome and non-Hodgkin's lymphoma: a systematic review and meta-analysis of cohort studies. Clin Rheumatol 2024; 43:2177-2186. [PMID: 38722505 DOI: 10.1007/s10067-024-06993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/19/2024]
Abstract
Primary Sjögren's syndrome (pSS), a chronic autoimmune condition, has been associated with an increased risk of several cancers. This study aims to delve into the relationship between pSS and the potential development of non-Hodgkin's lymphoma (NHL) utilizing an in-depth systematic review and meta-analysis approach. To thoroughly explore the topic, we conducted a thorough examination of the literature, drawing from reputable databases such as ProQuest, PubMed, Web of Science, Cochrane, and Google Scholar. Our data collection spanned until February 8, 2024, with no time limitation. Data were analyzed with Stata 14 software at a significance threshold of p < 0.05. We examined 15 cohort studies encompassing a total of 50,308 individuals from 1997 to 2023. The findings revealed a substantial link between pSS and the risk of NHL, evident across all demographics. Specifically, the standardized incidence ratio (SIR) was generally 8.78 (95% CI 5.51, 13.99), with similar trends observed in both men (SIR, 6.29; 95% CI 1.93, 20.51) and women (SIR, 9.60; 95% CI 5.89, 15.63). Additionally, the SIR (10.50 (95% CI 7, 15.75)), HR (2.82 (95% CI 1.28, 6.18)), and OR (10.50 (95% CI 3.04, 36.28)) indices further supported this association. Furthermore, the risk of non-NHL associated with pSS was noticeable across different age groups of 40-49 years (SIR, 30.13; 95% CI 14.62, 62.08), 50-59 years (SIR, 9.12; 95% CI 5.13, 16.19), and 60-69 years (SIR, 9; 95% CI 4.68, 17.32). pSS substantively augments the likelihood of NHL manifestation. It notably impacts females and those in earlier stages of adulthood with more acuity than males and older cohorts.
Collapse
Affiliation(s)
- Narges Ansari
- Isfahan University of Medical Science, Isfahan, Iran
| | - Mansour Salesi
- Department of Rheumatology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Jill N, Bhootra S, Kannanthodi S, Shanmugam G, Rakshit S, Rajak R, Thakkar V, Sarkar K. Interplay between signal transducers and activators of transcription (STAT) proteins and cancer: involvement, therapeutic and prognostic perspective. Clin Exp Med 2023; 23:4323-4339. [PMID: 37775649 DOI: 10.1007/s10238-023-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Signal transducers and activators of transcription or STAT are proteins that consist of various transcription factors that are responsible for activating genes regarding cell proliferation, differentiation, and apoptosis. They commonly activate several cytokine, growth, or hormone factors via the JAK-STAT signaling pathway by tyrosine phosphorylation which are responsible for giving rise to numerous immune responses. Mutations within the Janus-Kinases (JAKs) or the STATs can set off the commencement of various malfunctions of the immune system of the body; carcinogenesis being an inevitable outcome. STATs are known to act as both oncogenes and tumor suppressor genes which makes it a hot topic of investigation. Various STATs related mechanisms are currently being investigated to analyze its potential of serving as a therapeutic base for numerous immune diseases and cancer; a deeper understanding of the molecular mechanisms involved in the signaling pathways can contribute to the same. This review will throw light upon each STAT member in causing cancer malignancies by affecting subsequent signaling pathways and its genetic and epigenetic associations as well as various inhibitors that could be used to target these pathways thereby devising new treatment options. The review will also focus upon the therapeutic advances made in cancers that most commonly affect people and discuss how STAT genes are identified as prognostic markers.
Collapse
Affiliation(s)
- Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Samiyah Kannanthodi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rohit Rajak
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vidhi Thakkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Huang H, Liu J, Yang L, Yan Y, Chen M, Li B, Xu Z, Qin T, Qu S, Wang L, Huang G, Chen Y, Xiao Z. Micheliolide exerts effects in myeloproliferative neoplasms through inhibiting STAT3/5 phosphorylation via covalent binding to STAT3/5 proteins. BLOOD SCIENCE 2023; 5:258-268. [PMID: 37941916 PMCID: PMC10629731 DOI: 10.1097/bs9.0000000000000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 11/10/2023] Open
Abstract
Ruxolitinib is a cornerstone of management for some subsets of myeloproliferative neoplasms (MPNs); however, a considerable number of patients respond suboptimally. Here, we evaluated the efficacy of micheliolide (MCL), a natural guaianolide sesquiterpene lactone, alone or in combination with ruxolitinib in samples from patients with MPNs, JAK2V617F-mutated MPN cell lines, and a Jak2V617F knock-in mouse model. MCL effectively suppressed colony formation of hematopoietic progenitors in samples from patients with MPNs and inhibited cell growth and survival of MPN cell lines in vitro. Co-treatment with MCL and ruxolitinib resulted in greater inhibitory effects compared with treatment with ruxolitinib alone. Moreover, dimethylaminomicheliolide (DMAMCL), an orally available derivative of MCL, significantly increased the efficacy of ruxolitinib in reducing splenomegaly and cytokine production in Jak2V617F knock-in mice without evident effects on normal hematopoiesis. Importantly, MCL could target the Jak2V617F clone and reduce mutant allele burden in vivo. Mechanistically, MCL can form a stable covalent bond with cysteine residues of STAT3/5 to suppress their phosphorylation, thus inhibiting JAK/STAT signaling. Overall, these findings suggest that MCL is a promising drug in combination with ruxolitinib in the setting of suboptimal response to ruxolitinib.
Collapse
Affiliation(s)
- Huijun Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiru Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Meng Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Bing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zefeng Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tiejun Qin
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
| | - Gang Huang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Hematologic Pathology Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
5
|
Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M, Afroze D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front Pharmacol 2022; 13:791272. [PMID: 35295334 PMCID: PMC8918694 DOI: 10.3389/fphar.2022.791272] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
A ubiquitously expressed cytokine, transforming growth factor-beta (TGF-β) plays a significant role in various ongoing cellular mechanisms. The gain or loss-of-function of TGF-β and its downstream mediators could lead to a plethora of diseases includes tumorigenesis. Specifically, at the early onset of malignancy TGF-β act as tumour suppressor and plays a key role in clearing malignant cells by reducing the cellular proliferation and differentiation thus triggers the process of apoptosis. Subsequently, TGF-β at an advanced stage of malignancy promotes tumorigenesis by augmenting cellular transformation, epithelial-mesenchymal-transition invasion, and metastasis. Besides playing the dual roles, depending upon the stage of malignancy, TGF-β also regulates cell fate through immune and stroma components. This oscillatory role of TGF-β to fight against cancer or act as a traitor to collaborate and crosstalk with other tumorigenic signaling pathways and its betrayal within the cell depends upon the cellular context. Therefore, the current review highlights and understands the dual role of TGF-β under different cellular conditions and its crosstalk with other signaling pathways in modulating cell fate.
Collapse
|
6
|
Petrykey K, Rezgui AM, Guern ML, Beaulieu P, St-Onge P, Drouin S, Bertout L, Wang F, Baedke JL, Yasui Y, Hudson MM, Raboisson MJ, Laverdière C, Sinnett D, Andelfinger GU, Krajinovic M. Genetic factors in treatment-related cardiovascular complications in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics 2021; 22:885-901. [PMID: 34505544 PMCID: PMC9043873 DOI: 10.2217/pgs-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Cardiovascular disease represents one of the main causes of secondary morbidity and mortality in patients with childhood cancer. Patients & methods: To further address this issue, we analyzed cardiovascular complications in relation to common and rare genetic variants derived through whole-exome sequencing from childhood acute lymphoblastic leukemia survivors (PETALE cohort). Results: Significant associations were detected among common variants in the TTN gene, left ventricular ejection fraction (p ≤ 0.0005), and fractional shortening (p ≤ 0.001). Rare variants enrichment in the NOS1, ABCG2 and NOD2 was observed in relation to left ventricular ejection fraction, and in NOD2 and ZNF267 genes in relation to fractional shortening. Following stratification according to risk groups, the modulatory effect of rare variants was additionally found in the CBR1, ABCC5 and AKR1C3 genes. None of the associations was replicated in St-Jude Lifetime Cohort Study. Conclusion: Further studies are needed to confirm whether the described genetic markers may be useful in identifying patients at increased risk of these complications.
Collapse
Affiliation(s)
- Kateryna Petrykey
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
- Department of Pharmacology & Physiology, Université de Montréal, QC, H3T 1J4, Canada
| | - Aziz M Rezgui
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Mathilde Le Guern
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Patrick Beaulieu
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Pascal St-Onge
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Simon Drouin
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Laurence Bertout
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
| | - Fan Wang
- Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jessica L Baedke
- Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yutaka Yasui
- Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Melissa M Hudson
- Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marie-Josée Raboisson
- Department of Pediatrics, Université de Montréal, QC, H3T 1C5, Canada
- Cardiology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, QC, H3T 1C5, Canada
| | - Caroline Laverdière
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, QC, H3T 1C5, Canada
| | - Daniel Sinnett
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, QC, H3T 1C5, Canada
| | - Gregor U Andelfinger
- Department of Pediatrics, Université de Montréal, QC, H3T 1C5, Canada
- Fetomaternal and Neonatal Pathologies Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC, H3T 1C5, Canada
| | - Maja Krajinovic
- Immune Diseases and Cancer Research Axis, Sainte-Justine University Health Center (SJUHC), Montreal, QC H3T 1C5, Canada
- Department of Pharmacology & Physiology, Université de Montréal, QC, H3T 1J4, Canada
- Department of Pediatrics, Université de Montréal, QC, H3T 1C5, Canada
| |
Collapse
|
7
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
8
|
Davari N, Ahmadpour F, Kiani AA, Azadpour M, Asadi ZT. Evaluation of microRNA-223 and microRNA-125a expression association with STAT3 and Bcl2 genes in blood leukocytes of CLL patients: a case-control study. BMC Res Notes 2021; 14:21. [PMID: 33430952 PMCID: PMC8095339 DOI: 10.1186/s13104-020-05428-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE In chronic lymphocytic leukemia (CLL), lack of expression or dysregulation of some special miRs disrupts apoptosis of malignant cells; thereby miR expression can enhance cell proliferation, disease progression and decrease patient survival. RESULTS 30 CLL patients and 20 healthy individuals participated in the study. RNA was extracted to evaluate the expression of miR-125, miR-223, BCL-2 and signal transducer and transcription 3 activator (STAT3) genes; quantitative Real Time- PCR (Q-RT-PCR) was performed. MiR-125a and miR-223 expression decreased in the patients compared to the control group (P-Value:0.001). BCL-2 and STAT3 which are the target genes of these two miRs, showed increased expression, in the patients compared to the control subjects (P-Value: 0.001 and P-Value: 0.64 respectively). A significant reverse relationship was found between miR-125a and BCl-2 expression and WBC count. Significantly, miR-223 expression was associated with smoking in patients (P-Value: 0.007). Also, these miRs may have regulatory effects by controlling white blood cell (WBC) production based on the inverse correlation with WBC count and hemoglobin (Hb) concentration. Finally, miR-223 can be used as a prognostic factor in CLL patients; miR-125a may be useful for evaluating the therapeutic approaches based on the inverse link with BCl-2.
Collapse
Affiliation(s)
- Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asghar Kiani
- Department of Hematology and Blood Transfusion, Lorestan University, Khoramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Azadpour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zari Tahannejad Asadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|