1
|
P Córdova AL, Z M Fontanella S, Colonetti T, Rodrigues Uggioni ML, Grande AJ, Saggioratto MC, Schmitt Testoni E, Rosa MI. Role of vulvovaginal candidiasis infection in infertility: systematic review and meta-analysis. Braz J Microbiol 2024; 55:65-74. [PMID: 38153623 PMCID: PMC10920545 DOI: 10.1007/s42770-023-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVE To evaluate the relationship between fungal infection in the female genital tract and infertility. DATA SOURCES A systematic review was carried out, and the search was conducted in Medline, Embase, Web of Science, Google Scholar, and Cochrane Library databases until August 2022. The search strategy used standardized keywords such as "candidiasis" and "infertility," combined with their respective synonyms. The search was limited to human studies, with no language restrictions. STUDY ELIGIBILITY CRITERIA Primary articles that evaluated women of reproductive age with and without infertility and related to the presence or absence of candidiasis were included. STUDY APPRAISAL AND SYNTHESIS METHODS For the analyses, the odds ratio association measure was used with a confidence interval of 95% using RevMan software (version 5.4). RESULTS Eight studies, published between 1995 and 2021 in different countries around the world, were included in this systematic review. Two studies were excluded after sensitivity analysis. A total of 909 participants were included in the group of infertile women and 2363 women in the control group. The age of the evaluated women varied between 18 and 50 years. The random effect model was used and showed no significant difference when comparing candidiasis between fertile and infertile women (odds ratio: 1.44; 95% confidence interval 0.86, 2.41 p= 0.17). CONCLUSIONS There was no association between candidiasis and female sterility.
Collapse
Affiliation(s)
- Ana Luiza P Córdova
- Gynecology and Obstetrics Medical Residency Program, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Stéfani Z M Fontanella
- Gynecology and Obstetrics Medical Residency Program, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tamy Colonetti
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maria Laura Rodrigues Uggioni
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Carolina Saggioratto
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Eduardo Schmitt Testoni
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maria Inês Rosa
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Hatamiazar M, Mohammadnejad J, Khaleghi S. Chitosan-Albumin Nanocomposite as a Promising Nanocarrier for Efficient Delivery of Fluconazole Against Vaginal Candidiasis. Appl Biochem Biotechnol 2024; 196:701-716. [PMID: 37178249 DOI: 10.1007/s12010-023-04492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Currently, the high incidence of fungal infections among females has resulted in outstanding problems. Candida species is related with multidrug resistance and destitute clinical consequences. Chitosan-albumin derivatives with more stability exhibit innate antifungal and antibacterial effects that boost the activity of the drug without inflammatory impact. The stability and sustained release of Fluconazole in mucosal tissues can be ensured by encapsulating in protein/polysaccharide nanocomposites. Thus, we developed chitosan-albumin nanocomposite (CS-A) loaded with Fluconazole (Flu) antifungals against vaginal candidiasis. Various ratios of CS/Flu (1:1, 1:2, 2:1) were prepared. Thereafter, the CS-A-Flu nanocomposites were qualified and quantified using FT-IR, DLS, TEM, and SEM analytical devices, and the size range from 60 to 100 nm in diameter was attained for the synthesized nanocarriers. Afterward, the antifungal activity, biofilm reduction potency, and cell viability assay were performed for biomedical evaluation of formulations. The minimum inhibitory concentration) and minimum fungicidal concentration on Candida albicans were attained at 125 ng/μL and 150 ng/μL after treatment with a 1:2 (CS/Flu) ratio of CS-A-Flu. The biofilm reduction assay indicated that biofilm formation was between 0.05 and 0.1% for CS-A-Flu at all ratios. The MTT assay also exhibited excellent biocompatibility for samples, about 7 to 14% toxicity on human HGF normal cells. These data have indicated that CS-A-Flu would be a promising candidate against Candida albicans.
Collapse
Affiliation(s)
- Morvarid Hatamiazar
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
3
|
Andrade ARCD, Rezende MDS, Portela FVM, Pereira LMG, Nascimento da Silva B, Lima-Neto RGD, Rocha MFG, Sidrim JJC, Castelo-Branco DSCM, Cordeiro RDA. β-Estradiol and progesterone enhance biofilm development and persister cell formation in monospecies and microcosms biofilms derived from vulvovaginal candidiasis. BIOFOULING 2023; 39:719-729. [PMID: 37698054 DOI: 10.1080/08927014.2023.2256674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of Candida biofilms and reinforce the importance of PC in the pathogenesis of VVC.
Collapse
|
4
|
Medeiros CIS, Sousa MNAD, Filho GGA, Freitas FOR, Uchoa DPL, Nobre MSC, Bezerra ALD, Rolim LADMM, Morais AMB, Nogueira TBSS, Nogueira RBSS, Filho AAO, Lima EO. Antifungal activity of linalool against fluconazole-resistant clinical strains of vulvovaginal Candida albicans and its predictive mechanism of action. Braz J Med Biol Res 2022; 55:e11831. [PMID: 35976268 PMCID: PMC9377531 DOI: 10.1590/1414-431x2022e11831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans is the most frequently isolated opportunistic
pathogen in the female genital tract, with 92.3% of cases in Brazil associated
with vulvovaginal candidiasis (VVC). Linalool is a monoterpene compound from
plants of the genera Cinnamomum, Coriandrum,
Lavandula, and Citrus that has demonstrated a
fungicidal effect on strains of Candida spp., but its mechanism
of action is still unknown. For this purpose, broth microdilution techniques
were applied, as well as molecular docking in a predictive manner for this
mechanism. The main results of this study indicated that the C.
albicans strains analyzed were resistant to fluconazole and
sensitive to linalool at a dose of 256 µg/mL. Furthermore, the increase in the
minimum inhibitory concentration (MIC) of linalool in the presence of sorbitol
and ergosterol indicated that this molecule possibly affects the cell wall and
plasma membrane integrity of C. albicans. Molecular docking of
linalool with proteins that are key in the biosynthesis and maintenance of the
cell wall and the fungal plasma membrane integrity demonstrated the possibility
of linalool interacting with three important enzymes: 1,3-β-glucan synthase,
lanosterol 14α-demethylase, and Δ 14-sterol reductase. In
silico analysis showed that this monoterpene has theoretical but
significant oral bioavailability, low toxic potential, and high similarity to
pharmaceuticals. Therefore, the findings of this study indicated that linalool
probably causes damage to the cell wall and plasma membrane of C.
albicans, possibly by interaction with important enzymes involved
in the biosynthesis of these fungal structures, in addition to presenting low
in silico toxic potential.
Collapse
Affiliation(s)
- C I S Medeiros
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil.,Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M N A de Sousa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - G G A Filho
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - F O R Freitas
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - D P L Uchoa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M S C Nobre
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A L D Bezerra
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - L A D M M Rolim
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A M B Morais
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - T B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - R B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A A O Filho
- Unidade Acadêmica de Ciências Biológicas (UACB), Universidade Federal de Campina Grande, Patos, PB, Brasil
| | - E O Lima
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| |
Collapse
|
5
|
Senthilganesh J, Kuppusamy S, Durairajan R, Subramanian S, Veerappan A, Paramasivam N. Phytolectin nanoconjugates in combination with standard antifungals curb multi-species biofilms and virulence of Vulvovaginal Candidiasis (VVC) causing Candida albicans and Non albicans Candida. Med Mycol 2021; 60:6484805. [PMID: 34958385 DOI: 10.1093/mmy/myab083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Vulvovaginal Candidiasis (VVC) is commonly occurring yeast infection caused by Candida species in women. Among Candida species, C. albicans is the predominant member that causes vaginal candidiasis followed by Candida glabrata. Biofilm formation by Candida albicans on the vaginal mucosal tissue leads to VVC infection and is one of the factors for a commensal organism to get into virulent form leading to disease. In addition to that, morphological switching from yeast to hyphal form increases the risk of pathogenesis as it aids in tissue invasion. In this study, jacalin, a phyto-lectin complexed Copper sulfide nanoparticles (NPs) have been explored to eradicate the mono and mixed species biofilms formed by fluconazole resistant C. albicans and C. glabrata isolated from VVC patients. NPs along with standard antifungals like micafungin and amphotericin B have been evaluated to explore interaction behaviour and we observed synergistic interactions between them. Microscopic techniques like light microscopy, phase contrast microscopy, scanning electron microscopy, confocal laser scanning microscopy were used to visualize the inhibition of biofilm by NPs and in synergistic combinations with standard antifungals. Real time PCR analysis was carried out to study the expression pattern of the highly virulent genes which are responsible for yeast to hyphal switch, drug resistance and biofilm formation upon treatment with NPs in combination with standard antifungals. The current study shows that lectin conjugated NPs with standard antifungals might be a different means to disrupt the mixed species population of Candida spp. that causes VVC.
Collapse
Affiliation(s)
- Jayasankari Senthilganesh
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Shruthi Kuppusamy
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Rubini Durairajan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sivabala Subramanian
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Anbazhagan Veerappan
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| |
Collapse
|