1
|
da Silva WR, da Costa Almeida MV, Gominho L, Albuquerque ACMM, Cavalcanti UDNT, Cavalcanti LDFS, Romeiro K. Photodynamic therapy in the coadjuvant treatment of Sporothrix schenckii complex. SPECIAL CARE IN DENTISTRY 2024; 44:486-490. [PMID: 37436878 DOI: 10.1111/scd.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Sporotrichosis, a zoonosis caused by animal, mainly cat, scratches or bites, is caused by fungi belonging to the Sporothrix complex. Treatment usually consists in antifungal administration, although treatment failure and hepatotoxicity reports have been noted. Alternative sporotrichosis treatment methods, such as antimicrobial photodynamic therapy (aPDT), may, therefore, be indicated. CASE REPORT In this context, this study followed a 56-year-old male renal transplanted patient displaying disseminated sporotrichosis, presenting erythematous skin lesions with ulcerated backgrounds and hardened consistency on the nose, oral and scalp. The lesions were present for about 2 months and the patient coexisted with cats. Intravenous amphotericin B administration was initiated, and immunosuppression was suspended. Seven aPDT sessions were also performed in 48 h intervals on the oral lesions, employing 0.01% methylene blue gel as the photosensitizing agent. After the 4th aPDT session, the patient was discharged, amphotericin B administration was suspended, and the treatment was continued with itraconazole, without immunosuppression. Red laser was applied to the oral lesions after the 7th aPDT session. Significant lesion improvement was observed after the final aPDT session and complete palate lesion repair was noted after two red laser sessions. CONCLUSION These findings indicate that aPDT is a valuable strategy as an adjunct sporotrichosis treatment.
Collapse
Affiliation(s)
- Weslay Rodrigues da Silva
- Department of Oral Medicine, Real Hospital Português de Beneficência em Pernambuco, Recife, PE, Brazil
| | | | - Luciana Gominho
- Department of Restorative Dentistry, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | | | | | | | - Kaline Romeiro
- Department of Oral Medicine, Real Hospital Português de Beneficência em Pernambuco, Recife, PE, Brazil
| |
Collapse
|
2
|
Legabão BC, Galinari CB, Santos RSD, Bruschi ML, Gremião IDF, Boechat JS, Pereira SA, Malacarne LC, Caetano W, Bonfim-Mendonça PS, Svidzinski TIE. In vitro antifungal activity of curcumin mediated by photodynamic therapy on Sporothrix brasiliensis. Photodiagnosis Photodyn Ther 2023; 43:103659. [PMID: 37336466 DOI: 10.1016/j.pdpdt.2023.103659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Sporothrix brasiliensis is a pathogenic dimorphic fungus that affects humans and animals causing sporotrichosis. The treatment of this disease with conventional antifungals commonly results in therapeutic failures and resistance. Therefore, this study aimed to evaluate the in vitro effect of curcumin (CUR) mediated by photodynamic therapy (PDT) in its pure state and incorporated into pharmaceutical formulation in gel form, on the filamentous and yeast forms of S. brasiliensis. METHODS Cells from both forms of the fungus were treated with pure curcumin (PDT-CUR). For this, CUR concentrations ranging from 0.09 to 50 μM were incubated for 15 min and then irradiated with blue LED at 15 J/cm². Similarly, it was performed with PDT-CUR-gel, at lower concentration with fungistatic action. After, a qualitative and quantitative (colony forming units (CFU)) analysis of the results was performed. Additionally, reactive oxygen species (ROS) were detected by flow cytometry. Results PDT with 0.78 μM of CUR caused a significant reduction (p < 0.05) in cells of the filamentous and yeast form, 1.38 log10 and 1.18 log10, respectively, in comparison with the control. From the concentration of 1.56 μM of CUR, there was a total reduction in the number of CFU (≥ 3 log10). The PDT-CUR-gel, in relation to its base without CUR, presented a significant reduction (p < 0.05) of 0.83 log10 for the filamentous form and for the yeast form, 0.72 log10. ROS release was detected after the PDT-CUR assay, showing that this may be an important pathway of death caused by photoinactivation. Conclusion PDT-CUR has an important in vitro antifungal action against S. brasiliensis strains in both morphologies.
Collapse
Affiliation(s)
- Bárbara Cipulo Legabão
- Graduate Student (Master's), Biosciences and Pathophysiology Program, State University of Maringá, Maringá, Brazil
| | - Camila Barros Galinari
- Postgraduate student (PhD), Biosciences and Pathophysiology Program, State University of Maringá, Maringá, Brazil
| | - Rafaela Said Dos Santos
- Postgraduate student (PhD), R & D Laboratory of Drug Distribution Systems, Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Marcos Luciano Bruschi
- Professor, Drug Distribution Systems R&D Laboratory, Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Jéssica Sepúlveda Boechat
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Sandro Antônio Pereira
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | | | - Wilker Caetano
- Professor, Department of Chemistry, State University of Maringá, Maringá, Brazil
| | - Patrícia S Bonfim-Mendonça
- Professor, Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo 5790, block T20 room 203, Maringá CEP: 87020-900, Brazil
| | - Terezinha I E Svidzinski
- Professor, Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo 5790, block T20 room 203, Maringá CEP: 87020-900, Brazil.
| |
Collapse
|
3
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
4
|
de Oliveira de Siqueira LB, Dos Santos Matos AP, da Silva MRM, Pinto SR, Santos-Oliveira R, Ricci-Júnior E. Pharmaceutical Nanotechnology Applied to Phthalocyanines for the Promotion of the Antimicrobial Photodynamic Therapy: A Literature Review. Photodiagnosis Photodyn Ther 2022; 39:102896. [PMID: 35525432 DOI: 10.1016/j.pdpdt.2022.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Phthalocyanines are photosensitizers activated by light at a specific wavelength in the presence of oxygen and act topically through the production of Reactive Oxygen Species, which simultaneously attack several biomolecular targets in the pathogen agent and, therefore, have multiple and variable action sites. This nonspecific action site delineates the conventional resistance mechanisms. Antimicrobial Photodynamic Therapy (aPDT) is safe, easy to implement and, unlike conventional agents, the activity spectrum of photoantimicrobials. This work is a systematic review of the literature based on nanocarriers containing phthalocyanines in aPDT against bacteria, fungi, viruses, and protozoa. The search was performed in two different databases (MEDLINE/PubMed and Web of Science) between 2011 and May 2021. Nanocarriers often improve the action or are equivalent to free drugs, but their use allows substituting the organic solvent in the case of hydrophobic phthalocyanines, allowing for a safer application of aPDT with the possibility of prolonged release. In the case of hydrophilic phthalocyanines, they would allow for nonspecific site delivery with a possibility of cellular internalization. A single infectious lesion can have multiple microorganisms, and PDT with phthalocyanines is an interesting treatment given its ample spectrum of action. It is possible to highlight the upconversion nanosystems, which allow for the activation of phthalocyanine in deeper tissues by using longer wavelengths, as a system that has not yet been studied, but which could provide treatment solutions. The use of nanocarriers containing phthalocyanines requires more studies in animal models and clinical studies to establish the use of aPDT in humans.
Collapse
Affiliation(s)
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcio Robert Mattos da Silva
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suyene Rocha Pinto
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil; Laboratory of Nanoradiopharmacy and Radiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Tiburcio MA, Rocha AR, Romano RA, Inada NM, Bagnato VS, Carlos RM, Buzzá HH. In vitro evaluation of the cis-[Ru(phen) 2(pPDIp)] 2+⁎⁎ complex for antimicrobial photodynamic therapy against Sporothrix brasiliensis and Candida albicans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112414. [PMID: 35276578 DOI: 10.1016/j.jphotobiol.2022.112414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) activates a photosensitizer by visible light to generate cytotoxic oxygen species that lead to cell death. With proper illumination, PDT is often used in applications on superficial and sub-surface lesions. Sporotrichosis infection occurs by Sporothrix fungi which causes a skin wound, worsened by Candida albicans infections. This study investigated the photosensitizing efficiency of the Ru(phen)2(pPDIp)(PF6)2 complex, RupPDIp, against S. brasiliensis and C. albicans. MATERIAL AND METHODS RupPDIp efficiency against these fungi was tested using 450 nm (blue light and 36 J/cm2) and 525 nm (green light, 25.2 J/cm2) at 0.05-20 μM concentrations. To ensure PDT effectiveness, control groups were tested in the absence and in the presence of RupPDIp under light irradiation and in the dark. RESULTS RupPDIp eliminated both fungi at ≤5.0 μM. Green light showed the best results, eliminating S. brasiliensis and C. albicans colonies at RupPDIp 0.5 μM and 0.05 μM, respectively. CONCLUSION RupPDIp is a promising photosensitizer in aPDT, eliminating 106 CFU/mL of both fungi at 450 nm and 525 nm, with lower light doses and concentrations when treated with the green light compared to the blue light.
Collapse
Affiliation(s)
- M A Tiburcio
- Chemistry Department, Federal University of São Carlos, Brazil.
| | - A R Rocha
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; PPG Biotec, Federal University of São Carlos, Brazil
| | - R A Romano
- São Carlos Institute of Physics, University of Sao Paulo, Brazil
| | - N M Inada
- São Carlos Institute of Physics, University of Sao Paulo, Brazil
| | - V S Bagnato
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; Hagler Fellow, Texas A&M University, College Station, TX, USA
| | - R M Carlos
- Chemistry Department, Federal University of São Carlos, Brazil
| | - H H Buzzá
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Legabão BC, Fernandes JA, de Oliveira Barbosa GF, Bonfim-Mendonça PS, Svidzinski TI. The zoonosis sporotrichosis can be successfully treated by photodynamic therapy: A scoping review. Acta Trop 2022; 228:106341. [PMID: 35131203 DOI: 10.1016/j.actatropica.2022.106341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
Sporotrichosis is a worldwide zoonosis, prevalent in tropical and subtropical regions. In recent years, there has been a substantial increase in human and feline cases reported in Brazil. Despite this, the antifungal treatment for sporotrichosis is still limited, and thus, research into new therapeutic modalities must be encouraged. Recently, photodynamic therapy has been introduced as a treatment for sporotrichosis. This work presents an overview of both in vitro and in vivo studies that have used photodynamic therapy in the context of photoinactivation of Sporothrix species. Until now, as far as the authors are aware, this is the first scope review specifically on photodynamic therapy for the treatment of sporotrichosis. A systematic electronic search was conducted in two databases: Web of Science and PubMed. Seven original articles published from 2010 to July 2021 were selected, six of which met the proposed inclusion and exclusion criteria and were considered in this scoping review. Concerning the photoinactivation of Sporothrix spp. the results have been promising as studies, in both animals and humans, have reported significant clinical and mycological effects. The most used photosensitizers were methylene blue and its derivatives, and aminolevulinic acid and its methyl derivative, methyl aminolevulinic acid. In conclusion, photodynamic therapy has great potential in treatment of sporotrichosis, as its fungicidal effect both in vitro and in vivo has clearly been demonstrated. Photodynamic therapy could be used in conjunction with classic antifungal agents to optimize treatment outcomes.
Collapse
|
7
|
Shen JJ, Arendrup MC, Jemec GBE, Saunte DML. Photodynamic therapy: A treatment option for terbinafine resistant Trichophyton species. Photodiagnosis Photodyn Ther 2021; 33:102169. [PMID: 33497815 DOI: 10.1016/j.pdpdt.2020.102169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Terbinafine is a first-line agent against Trichophyton-infections. However, treatment failure and resistance due to squalene epoxidase (SQLE) alterations are increasingly being reported. Photodynamic therapy (PDT) is based on combining a photosensitizer, light and oxygen to create photo-activated reactive oxygen species. It has demonstrated in vitro and in vivo activity against various microorganisms including dermatophytes. We investigated if PDT is equally effective against terbinafine resistant and susceptible strains. METHODS Minimum inhibitory concentrations (MIC) of methylene blue (MB)-PDT against wildtype and resistant Trichophyton rubrum and Trichophyton interdigitale were determined in duplicate in microtitre plates following EUCAST E.Def 11.0 reference methodology. Included mutants harboured F397L, L393F, L393S, F415S or F397I SQLE-alterations. Illumination with red diode light was performed after <3 min, 30 min and 3 h of incubation, respectively, and plates were cultured at 25 °C for 5 days. Geometric mean MICs and MIC ranges were calculated for each isolate. RESULTS MB-PDT led to complete inhibition of all isolates at geometric mean concentrations of 1-16 mg/L. Efficacy was independent of incubation time prior to illumination, terbinafine susceptibility (MICs ≤0.004-4 mg/L) and presence of SQLE mutations. However, the MB-PDT MIC was slightly elevated (MB: 2-8 mg/L and 8-16 mg/L) in isolates from two pigmented cultures of Trichophyton interdigitale (one wildtype and one harbouring L393F) with a darker color when compared to unpigmented cultures (MB: 0.5-4 mg/L). CONCLUSION Terbinafine resistant and susceptible strains are equally susceptible to MB-PDT. Lower efficacy was observed against dark coloured isolates which we speculate may be due to melanisation interfering with photo-activation due to preferential light absorption.
Collapse
Affiliation(s)
- Julia J Shen
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark; Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Maiken C Arendrup
- Department of Clinical Medicine, Falculty of Health Science, University of Copenhagen, Copenhagen, Denmark; Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Falculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie L Saunte
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Falculty of Health Science, University of Copenhagen, Copenhagen, Denmark; Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
8
|
Chen R, Song Y, Zhen Y, Yao L, Shi Y, Cui Y, Li S. 5-Aminolevulinic acid-mediated photodynamic therapy has effective antifungal activity against Sporothrix globosa in vitro. Mycoses 2020; 63:1311-1320. [PMID: 32816371 DOI: 10.1111/myc.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND An alternative therapy for sporotrichosis is necessary to reduce the treatment time and raise clinical efficacy. The 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is a promising platform with which to treat mycoses. However, despite the worldwide prevalence of Sporothrix globosa, a causative agent of sporotrichosis, the effect of ALA-PDT on this pathogen has not been validated. OBJECTIVES The aim of this study was to evaluate the effect of ALA-PDT on S globosa and the protection of melanin through an in vitro study. The mechanisms involved were also investigated. METHODS To estimate the survival rate of S globosa treated with ALA-PDT and the protection offered by melanin, the conidia and yeast cells of wild-type S globosa (Mel+), other clinical strains, tricyclazole-treated Mel+ and an albino mutant strain (Mel-) were incubated with and without ALA or irradiation. Reactive oxygen species generation by Mel+ conidia induced by ALA-PDT was assayed. SEM and TEM were conducted to obverse ultrastructural changes in the conidia. A comet assay was performed to evaluate DNA damage. RESULTS The survival rate of S globosa conidia and yeast cells significantly decreased following incubation with 1.19M ALA and 162 J/cm2 irradiation in vitro. Melanin was not only capable of protecting the conidia against ALA-PDT, but also against ALA or irradiation alone. After induction by ALA-PDT, alterations in reactive oxygen species generation, DNA damage and ultrastructural changes were observed. CONCLUSIONS ALA-PDT inhibits the survival of S globosa conidia in vitro and therefore has potential for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Ruili Chen
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ying Shi
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Yan Cui
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Chen F, Jiang R, Dong S, Yan B. Efficient Treatment of Sporothrix globosa Infection Using the Antibody Elicited by Recombinant Phage Nanofibers. Front Pharmacol 2019; 10:160. [PMID: 30873031 PMCID: PMC6400886 DOI: 10.3389/fphar.2019.00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Antifungal therapy is used to treat sporotrichosis. However, there are several limitations in this therapy, such as development of drug resistance and potential health risks including liver injury. The purpose of our study was to evaluate the antifungal efficacy of antibody against the hybrid phage nanofibers displaying KPVQHALLTPLGLDR (phage-KR) in a fungal-infected mouse model. In this study, we extracte an antibody against hybrid phage nanofibers (phage-KR) from immunized mice and passively inoculate Sporothrix globosa (S. globosa) infected mice. The study shows that the antibody exhibits efficient inhibition efficacy of the S. globosa infection, including reduction of the progressive fungi colonizing, increase of animal survival rate and relief of organ inflammation in the mice. The results indicate that antibody against phage-KR may act as a potential strategy for safe and efficient treatment of S. globosa infections.
Collapse
Affiliation(s)
- Feng Chen
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuai Dong
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Bailing Yan
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Effects of Photodynamic Inactivation on the Growth and Antifungal Susceptibility of Rhizopus oryzae. Mycopathologia 2019; 184:315-319. [PMID: 30689142 DOI: 10.1007/s11046-019-00321-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Mucormycosis is an aggressive and high-mortality opportunistic fungal infection, especially in immunocompromised patients. Conventional antifungals or surgery showed a limited effect on this disease. The antimicrobial photodynamic therapy (aPDT) has been proven to be a promising therapeutic choice against multiple pathogenic fungi. We evaluated the effect of aPDT by using methylene blue (MB) combined with a light emitting diode (LED) on the viability of Rhizopus oryzae, as well as the antifungal susceptibility after aPDT treatment in vitro. A total of six strains were included in this study; MB (8, 16, and 32 μg/ml) was chosen for the photosensitizer, and a light source of LED (635 ± 10 nm, 12 J/cm2) device was used to active it. aPDT with MB (32 μg/ml) and LED was highly effective in cell growth inhibition and exhibited colony-forming unit reductions of up to 4.3log10. The minimal inhibitory concentration ranges of itraconazole, posaconazole, and amphotericin B decreased from > 32 μg/ml to 4-8 μg/ml, 8-16 μg/ml to 0.5-2 μg/ml, and 2-4 μg/ml to 0.25-0.5 μg/ml, respectively, after pre-treatment with MB (8 μg/ml) and LED. In conclusion, aPDT with MB and LED was a promising therapeutic option against R. oryzae infections alone or combined with antifungal agents. However, further investigation is needed to determine the potential for clinic therapy and to elucidate the underlying mechanism.
Collapse
|
11
|
Ni N, Zhong Y, Chen S, Xia XJ, Liu ZH. In vitro aminolevulinic acid mediated-antimicrobial photodynamic therapy inactivates growth of Prototheca wickerhamii but does not change antibacterial and antifungal drug susceptibiltity profile. Photodiagnosis Photodyn Ther 2018; 25:280-284. [PMID: 30586618 DOI: 10.1016/j.pdpdt.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy(aPDT) has been used to treat localized cutaneous fungal infections that have an enhanced antifungal susceptibility profile. The aim of this study was to evaluate the effect of ALA aPDT on both the growth and the antimicrobial and antifungal susceptibility of Prototheca wickerhamii. METHODS Six isolates of P. wickerhamii were used in the present study. The inocula in sterile 6-well microtiter plates were irradiated with narrow band LED (633 ± 10 nm) at the light intensity of 100 mW/cm2 and at a distance of 1 cm for 900 s. The ALA was tested at concentrations of 1, 5, and 10 mmol/l, while 10-μl aliquots of suspensions from each group were inoculated on Sabouraud dextrose agar to test the photoinactivation. Antibiotic susceptibility was investigated by the disc-diffusion method. RESULTS Our study shows ALA aPDT induced 46% ± 24.23% reduction of the growth of all tested P. wickerhamii strains in T1 group. ALA aPDT induced 50.39% ± 19.88% reduction of the growth of all tested P. wickerhamii strains in T2 group. ALA aPDT induced 52.68 ± 20.22% reduction of the growth of all tested P. wickerhamii strains inT3 group. Single ALA aPDT induced 32.97% ± 1.6% growith reduction of three tested strains(O23d, O23e and 62,207), while repeated ALA aPDT induced 51.65 ± 2.91% reduction of the growth(P value = 0.000). There were no significant difference of the inhibitory zone diameter of both antibacterial and antifungal agents before and after ALA aPDT. CONCLUSIONS ALA aPDT can inactivate the growth of P. wickerhamii, and repeated aPDT has more photoinactivation of P. wickerhamii. ALA aPDT does not change antibacterial agents and antifungal drugs susceptibility profile of P. wickerhamii.
Collapse
Affiliation(s)
- Na Ni
- Department of Laboratory, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Yan Zhong
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Shi Chen
- Department of Laboratory, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Xiu-Jiao Xia
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Ze-Hu Liu
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China.
| |
Collapse
|
12
|
García Carnero LC, Lozoya Pérez NE, González Hernández SE, Martínez Álvarez JA. Immunity and Treatment of Sporotrichosis. J Fungi (Basel) 2018; 4:jof4030100. [PMID: 30127270 PMCID: PMC6162376 DOI: 10.3390/jof4030100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022] Open
Abstract
Species of the Sporothrix complex are the etiological agents of sporotrichosis, an important subcutaneous mycosis with several clinical forms and an increasing incidence around the world that affects humans and other mammals. The immunological mechanisms involved in the prevention and control of this mycosis are not entirely understood. Many reports have suggested that cell-mediated immunity has an essential role in the development of the disease, being the primary response controlling it, while only recent data supports that the humoral response is essential for the appropriate control. This mycosis is a challenge for diagnosis since the culture and isolation of the organism are time-consuming and complicated; reasons that have led to the study of fungus antigenic molecules capable of generating a detectable humoral response. The treatment for this disease includes the use of several antifungal drugs like itraconazole, amphotericin B, caspofungin, fluconazole, and the combination between them among others such as the extract of Vismia guianensis.
Collapse
Affiliation(s)
- Laura Cristina García Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - Nancy Edith Lozoya Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - Sandra Elizabeth González Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - José Ascención Martínez Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| |
Collapse
|
13
|
Angelo T, Borgheti-Cardoso LN, Gelfuso GM, Taveira SF, Gratieri T. Chemical and physical strategies in onychomycosis topical treatment: A review. Med Mycol 2018; 55:461-475. [PMID: 27703019 DOI: 10.1093/mmy/myw084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Onychomycosis is a fungal infection of the fingernails or toenails caused by dermatophytes, nondermatophytes, moulds, and yeasts. This condition affects around 10-30% people worldwide, negatively influencing patients' quality of life, with severe outcomes in some cases. Since the nail unit acts as a barrier to exogenous substances, its physiological features hampers drug penetration, turning the onychomycosis treatment a challenge. Currently, there are several oral and topical therapies available; nevertheless, cure rates are still low and relapse rates achieves 10-53%. Also, serious side effects may be developed due to long-term treatment. In light of these facts, researchers have focused on improving topical treatments, either by modifying the vehicle or by using some physical technique to improve drug delivery trough the nail plate, hence increasing therapy effectiveness. Therefore, the aim of this paper is to explain these novel alternative approaches. First, the challenges for drug ungual penetration are presented. Then, the chemical and physical strategies developed for overcoming the barriers for drug penetration are discussed. We hope that the information gathered may be useful for the development of safer and more effective treatments for onychomycosis.
Collapse
Affiliation(s)
- Tamara Angelo
- Laboratory of Food, Drugs and Cosmetics (LTMAC). School of Health Sciences, University of Brasília. Campus Universitário Darcy Ribeiro, s/n, 70910-900, Brasília, DF, Brazil
| | - Lívia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo. Avenida do Café, s/n, 14040903, Ribeirão Preto, SP, Brazil
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC). School of Health Sciences, University of Brasília. Campus Universitário Darcy Ribeiro, s/n, 70910-900, Brasília, DF, Brazil
| | - Stephânia Fleury Taveira
- School of Pharmacy, Federal University of Goiás. Rua 240 c/5ª. Avenida, s/n, Setor Leste Universitário, 74.605-170, Goiânia, GO, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC). School of Health Sciences, University of Brasília. Campus Universitário Darcy Ribeiro, s/n, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
14
|
Lu Q, Sun Y, Tian D, Xiang S, Gao L. Effects of Photodynamic Therapy on the Growth and Antifungal Susceptibility of Scedosporium and Lomentospora spp. Mycopathologia 2017; 182:1037-1043. [PMID: 28836110 DOI: 10.1007/s11046-017-0195-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
Scedosporium and Lomentospora species are the second most frequent colonizing, allergenic, or invasive fungal pathogens in patients with cystic fibrosis, and are responsible for infections varying from cutaneous and subcutaneous tissue infections caused by traumatic inoculation to severe systemic diseases in immunocompromised patients. The clinical relevance of fungal airway colonization for individual patients harboring Scedosporium and Lomentospora species is still an underestimated issue. The high resistance of Scedosporium and Lomentospora species to antifungal drugs has highlighted the need for alternative treatment modalities, and antimicrobial photodynamic therapy may be one such alternative. In this study, methylene blue was applied as a photosensitizing agent to 6 type strains of Scedosporium and Lomentospora species, and we irradiated the strains using a light-emitting diode (635 ± 10 nm, 12 J/cm2). We evaluated the effects of photodynamic therapy on strain growth and on the in vitro susceptibility of the strains to itraconazole, voriconazole, posaconazole, and amphotericin B. A colony-forming unit reduction of up to 5.2 log10 was achieved. Minimal inhibitory concentration ranges also decreased significantly with photoinactivation. Photodynamic therapy improved both the inactivation rates and the antifungal susceptibility profile of all fungal isolates tested.
Collapse
Affiliation(s)
- Qiaoyun Lu
- Department of Dermatology, Central Hospital of Xiangyang, Hubei College of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, People's Republic of China.
| | - Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, People's Republic of China
| | - Dingdan Tian
- Department of Dermatology, Hospital of Wuhan University, Wuhan, 430000, People's Republic of China
| | - Shoubao Xiang
- Department of Dermatology, Central Hospital of Xiangyang, Hubei College of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, People's Republic of China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
15
|
Pauletti NA, Girotto LPS, Leite FHS, Mario DN. Effect of photoactivation on the reduction of composite resin contamination. Eur J Oral Sci 2017; 125:223-226. [PMID: 28440039 DOI: 10.1111/eos.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination.
Collapse
Affiliation(s)
| | | | | | - Débora N Mario
- School of Dentistry, IMED - Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Gao L, Jiang S, Sun Y, Deng M, Wu Q, Li M, Zeng T. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp. Front Microbiol 2016; 7:617. [PMID: 27199946 PMCID: PMC4847004 DOI: 10.3389/fmicb.2016.00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/14/2016] [Indexed: 12/02/2022] Open
Abstract
Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm2), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in SMIC50 and SMIC80 compared to untreated groups for both species, except SMIC80 of itraconazole against Fusarium biofilms. In conclusion, in vitro photodynamic therapy was efficient in inactivation of Fusarium spp. and Exophiala spp., both planktonic cultures and biofilms. In addition, the combination of aPDT and antifungal drugs represents an attractive alternative to the current antifungal strategies. However, further investigations are warranted for the reliable and safe application in clinical practice.
Collapse
Affiliation(s)
- Lujuan Gao
- Department of Dermatology, Zhongshan Hospital Fudan University Shanghai, China
| | - Shaojie Jiang
- Department of Gastroenterology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University Jingzhou, China
| | - Meiqi Deng
- The Second Clinical Medical College, Yangtze University Jingzhou, China
| | - Qingzhi Wu
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University Jingzhou, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital Fudan University Shanghai, China
| | - Tongxiang Zeng
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University Jingzhou, China
| |
Collapse
|
17
|
Spezzia-Mazzocco T, Torres-Hurtado SA, Ramírez-San-Juan JC, Ramos-García R. In-vitro effect of antimicrobial photodynamic therapy with methylene blue in two different genera of dermatophyte fungi. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/plm-2016-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Nenoff P, Reinel D, Krüger C, Grob H, Mugisha P, Süß A, Mayser P. Tropen- und Reise-assoziierte Dermatomykosen. Hautarzt 2015; 66:522-32. [DOI: 10.1007/s00105-015-3635-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|