1
|
Pan Y, Sun Y, Chen L, Cheng Y, Jin P, Zhang W, Zheng L, Liu J, Zhou T, Xu Z, Li C, Kostoulias X, Watson CJ, McGiffin D, Peleg AY, Qu Y. Candida causes recurrent vulvovaginal candidiasis by forming morphologically disparate biofilms on the human vaginal epithelium. Biofilm 2023; 6:100162. [PMID: 37941804 PMCID: PMC10630605 DOI: 10.1016/j.bioflm.2023.100162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Background Recurrent vulvovaginal candidiasis (RVVC) is a recalcitrant medical condition that affects many women of reproductive age. The importance of biofilm formation by Candida in RVVC has been recently questioned. This study aimed to elucidate the fundamental growth modes of Candida in the vagina of patients with RVVC or sporadic vulvovaginal candidiasis (VVC) and to assess their roles in the persistence of RVVC. Methods Vaginal tissues were sampled from twelve patients clinically and microbiologically diagnosed as RVVC or VVC at a post-antifungal-treatment and asymptomatic period. High-resolution scanning electron microscopy, fluorescence in situ hybridization in combination with Candida-specific 18S rRNA probes and viable fungal burden were used to qualitatively and quantitatively evaluate Candida growth in the human vagina. The presence of Candida biofilm extracellular polymeric substances was examined using confocal laser scanning microscopy and biopsy sections pre-stained with Concanavalin A. Histopathological analysis was carried out on infected vaginal tissues stained with hematoxylin and eosin. Lastly, the susceptibility of epithelium-associated Candida biofilms to fluconazole at the peak serum concentration was evaluated. Results Candida species grew on the vaginal epithelium of RVVC patients as morphologically disparate biofilms including monolayers, microcolonies, and macro-colonies, in addition to sporadic adherent cells. Candida biofilm growth on the vaginal epithelium was associated with mild lymphocytic infiltration of the vaginal mucosa. These epithelium-based Candida biofilms presented an important characteristic contributing to the persistence of RVVC that is the high tolerance to fluconazole. Conclusions In summary, our study provides direct evidence to support the presence of Candida biofilms in RVVC and an important role of biofilm formation in disease persistence.
Collapse
Affiliation(s)
- Yihong Pan
- Wenzhou Medical University-Monash BDI Alliance in Clinical and Experimental Biomedicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Department of Obstetrics and Gynaecology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Yao Sun
- Wenzhou Medical University-Monash BDI Alliance in Clinical and Experimental Biomedicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lanqian Chen
- Department of Pathology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Yali Cheng
- Department of Obstetrics and Gynaecology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Panpan Jin
- Department of Obstetrics and Gynaecology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Weidan Zhang
- Department of Obstetrics and Gynaecology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Lingzhi Zheng
- Department of Obstetrics and Gynaecology, Taizhou Hospital of Wenzhou Medical University, Zhejiang, 318050, China
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing, Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Tieli Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing, Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Xenia Kostoulias
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3004, Australia
- Department of Microbiology, Infection Program, Biomedical Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Cathy J. Watson
- School of Population and Global Health, University of Melbourne, Carlton, 3053, Australia
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred and Monash University, Melbourne, Victoria, 3004, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3004, Australia
- Department of Microbiology, Infection Program, Biomedical Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Yue Qu
- Wenzhou Medical University-Monash BDI Alliance in Clinical and Experimental Biomedicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3004, Australia
- Department of Microbiology, Infection Program, Biomedical Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
2
|
Fan W, Li J, Chen L, Wu W, Li X, Zhong W, Pan H. Clinical Evaluation of Polymerase Chain Reaction Coupled with Quantum Dot Fluorescence Analysis for Diagnosis of Candida Infection in Vulvovaginal Candidiasis Practice. Infect Drug Resist 2023; 16:4857-4865. [PMID: 37520453 PMCID: PMC10386842 DOI: 10.2147/idr.s410128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Time-consuming culture methods and wet-mount microscopy (WMM) with low sensitivity have difficulties in diagnosing Vulvovaginal candidiasis (VVC). Rapid and highly sensitive polymerase chain reaction coupled with quantum dot fluorescence analysis (PCR-QDFA) for the diagnosis of VVC has not been reported to date. This study was the first to evaluate the performance of PCR-QDFA for diagnosis of Candida strains in the leukorrhea samples from patients with suspected VVC. Patients and Methods Leukorrhea samples from all visited patients were taken from the vagina using vaginal swabs by clinicians. We evaluated patients admitted with suspected VVC who completed WMM for diagnosis and reported the diagnostic effectiveness of PCR-QDFA and Candida culture (gold standard) when testing leucorrhea samples. Results A total of 720 leukorrhea samples from 387 VVC-positive patients and 333 VVC-negative patients were included in this study. Of the 387 leukorrhea samples from the VVC-positive patients, 391 Candida strains were identified by culture. 99.23% (388/391) Candida strains were included in the PCR-QDFA list. The 388 Candida strains belonged to four different species of Candida, including C. albicans (n = 273, 70.36%), C. glabrata (n = 85, 21.91%), C. tropicalis (n = 16, 4.12%), and C. krusei (n = 14, 3.61%). PCR-QDFA diagnosed Candida strains in 340/384 (88.54%) of the leucorrhea samples with Candida strains infection. The sensitivity of PCR-QDFA for C. albicans, C. glabrata, C. tropicalis, and C. krusei was 89.01%, 85.88%, 81.25% and 92.86%, respectively. The specificity of PCR-QDFA for C. albicans, C. glabrata, C. tropicalis and C. krusei was 93.69%, 99.37%, 99.71%, and 99.57%, respectively. Conclusion The highly sensitive and specific PCR-QDFA technique can be exploited as a rapid (approximately 4 h) diagnostic tool for common Candida strains of leucorrhea samples from patients with suspected VVC.
Collapse
Affiliation(s)
- Wenjia Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Jie Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Lingxia Chen
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Wenhao Wu
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Hongying Pan
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| |
Collapse
|
3
|
Ge G, Yang Z, Li D, Zhang N, Chen B, Shi D. Distinct host immune responses in recurrent vulvovaginal candidiasis and vulvovaginal candidiasis. Front Immunol 2022; 13:959740. [PMID: 35967437 PMCID: PMC9366074 DOI: 10.3389/fimmu.2022.959740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) and vulvovaginal candidiasis (RVVC) are one of the most common gynecological infections, primarily caused by Candida species. Although risk factors of RVVC and VVC have been identified in many studies, antifungal immunological mechanisms are still not fully understood. We performed a 1-year prospective study in a local hospital to monitor 98 patients clinically diagnosed with gynecological Candida infection. The results showed that 20.41% (20/98) are with RVVC, and 79.59% (78/98) patients have VVC. C. albicans accounts for 90% and 96.1% of all strains isolated collected from RVVC and VVC patients, respectively. Antifungal susceptibility testing showed no significant difference in Candida species between RVVC and VVC patients. However, the serum levels of IFN-γ, TNF-α, and IL-17F in the RVVC group were significantly lower than those of the VVC group, while IL-4, IL-6, and IL-10 were higher in the RVVC patients than VVC patients. IL-17A and IL-2 levels were comparable between the two groups. Taken together, our results suggest that the host-immune responses, especially Th1/2 immunity, may play important roles in prognosis of RVVC and VVC.
Collapse
Affiliation(s)
- Gai Ge
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhiya Yang
- Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, United States
| | - Ning Zhang
- Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| | - Biao Chen
- Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
- Department of Dermatology, Jining No.1 People’s Hospital, Jining, China
- *Correspondence: Dongmei Shi,
| |
Collapse
|
4
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
5
|
Faria-Gonçalves P, Rolo J, Gaspar C, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Virulence Factors as Promoters of Chronic Vulvovaginal Candidosis: A Review. Mycopathologia 2021; 186:755-773. [PMID: 34613569 DOI: 10.1007/s11046-021-00592-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The vast majority of the species of the genus Candida spp. is commensal in humans; however, some are opportunistic pathogens that can cause infection, called candidosis. Among the different types of candidosis, we highlight the vulvovaginal (VVC) which can occur in two main clinical variants: chronic (cVVC) and episodic or sporadic. The incidence of cVVC has been worrying the scientific community, promoting the research on genotypic and phenotypic causes of its occurrence. We summarize important findings on factors that favor chronic vulvovaginal candidosis with respect to molecular epidemiology and the expression of various virulence factors, while clarifying the terminology involving these infections. AIM AND METHODOLOGY The aim of this review was to gather research that linked virulence factors to VVC and its persistence and recurrence, using two databases (Pubmed and Google Scholar). Predisposing factors in women for the occurrence of cVVC and some studies that refer new preventive and alternative therapies were also included, where appropriate. RESULTS AND DISCUSSION Several studies have been shedding light on the increasing number of persistence and recurrences of VVC. The expression of virulence factors has been related to both chronic forms of VVC and antifungal resistance. Other studies report mutations occurring in the genome of Candida spp. during the infection phase which may be important indications for new therapies. The introduction of preventive therapies and new therapies has revealed great importance and is also highlighted here.
Collapse
Affiliation(s)
- Paula Faria-Gonçalves
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Medicine, University Mandume Ya Ndemufayo, Lubango, Angola.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joana Rolo
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - José Martinez-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| |
Collapse
|
6
|
Analysis of Biofilm-Related Genes and Antifungal Susceptibility Pattern of Vaginal Candida albicans and Non- Candida albicans Species. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5598907. [PMID: 34136569 PMCID: PMC8179781 DOI: 10.1155/2021/5598907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023]
Abstract
Background Vulvovaginal candidiasis caused by Candida species is a prevalent fungal infection among women. It is believed that the pathogenesis of Candida species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. Methods We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Results Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by the non-Candida albicans species (33%). All C. albicans complex isolates were confirmed as C. albicans by HWP-PCR, and all isolates of the C. glabrata complex were revealed to be C. glabrata sensu stricto using the multiplex PCR method. FLC resistance was observed in 23.4% of C. albicans and 7.7% of C. glabrata. The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.
Collapse
|
7
|
Ignjatović A, Arsić-Arsenijević V, Golubović M, Đenić S, Momčilović S, Trajković A, Ranđelović M, Ćirić V, Otašević S. Recurrent Vulvovaginal Candidosis and Cluster Analysis of Clinical Signs and Symptoms: A Laboratory-Based Investigation. J Fungi (Basel) 2020; 6:jof6030113. [PMID: 32707751 PMCID: PMC7559823 DOI: 10.3390/jof6030113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Recurrent vulvovaginal candidosis (RVVC) represents a major health problem that significantly affects a patient’s quality of life (QoL). This infection presents with a plethora of clinical manifestation, and this is the first study that carries out a cluster analysis of these signs and symptoms (SS). The goals are to evaluate the distribution of species causing RVVC, their in-vitro susceptibility to antifungals, and the patient’s QoL. Additionally, the clinical characteristics are analyzed using cluster analysis. Prospective analysis of data was performed for women diagnosed with RVVC in the period from January 2016 to December 2019 based on the analysis of data from a single-center’s records. The standard mycological methods and antifungal susceptibility testing were done. Clinical characteristics and QoL were examined by appropriate questions. The cluster analysis was used to identify clusters of SS. A total of 320 women were diagnosed. The dominant species was Candida (C.) albicans. Non-albicans Candida (NAC) yeast was found in 24.4%, and the most common was C. glabrata. Interestingly, Saccharomyces (S.) cerevisiae was detected in 2%. All of the isolated species, except C. parapsilosis and C. kefyr, demonstrated reduced susceptibility to antifungals. We confirmed the emergence of the NAC species and S. cerevisiae with reduced susceptibility to antifungals. Cluster analysis represented by a dendrogram revealed three SS clusters: irritation, uncommon, and discharge, but further studies are needed to examine the relationship between clusters, Candida strains, and outcomes.
Collapse
Affiliation(s)
- Aleksandra Ignjatović
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- Public Health Institute Niš, 18000 Niš, Serbia; (M.R.); (S.O.)
| | - Valentina Arsić-Arsenijević
- Department of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-63327564
| | - Milan Golubović
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.G.); (S.Đ.); (S.M.)
- Clinic of Pediatrics, Clinical Center Niš, 18000 Niš, Serbia
| | - Saša Đenić
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.G.); (S.Đ.); (S.M.)
- Center for Radiology, Clinical Center Nis, 18000 Niš, Serbia
| | - Stefan Momčilović
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.G.); (S.Đ.); (S.M.)
- Plastic and Reconstructive Surgery Clinic, Clinical Center Niš, 18000 Niš, Serbia
| | | | - Marina Ranđelović
- Public Health Institute Niš, 18000 Niš, Serbia; (M.R.); (S.O.)
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Vojislav Ćirić
- Department of Internal Medicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Suzana Otašević
- Public Health Institute Niš, 18000 Niš, Serbia; (M.R.); (S.O.)
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
8
|
Wu X, Zhang S, Li H, Shen L, Dong C, Sun Y, Chen H, Xu B, Zhuang W, Deighton M, Qu Y. Biofilm Formation of Candida albicans Facilitates Fungal Infiltration and Persister Cell Formation in Vaginal Candidiasis. Front Microbiol 2020; 11:1117. [PMID: 32582081 PMCID: PMC7289921 DOI: 10.3389/fmicb.2020.01117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Background Vaginal candidiasis is an important medical condition awaiting more effective treatment. How Candida albicans causes this disease and survives antifungal treatment is not yet fully understood. This study aimed to establish a comprehensive understanding of biofilm-related defensive strategies that C. albicans uses to establish vaginal candidiasis and to survive antifungal treatment. Methods A mouse model of vaginal candidiasis was adopted to examine the formation of biotic biofilms on the vaginal epithelium and fungal infiltration by laboratory and clinical strains of C. albicans. Histopathological changes and local inflammation in the vaginal epithelium caused by C. albicans of different biofilm phenotypes were compared. Antifungal susceptibility testing was carried out for C. albicans grown as planktonic cells, microplate-based abiotic biofilms, and epithelium-based biotic biofilms. Formation of persister cells by C. albicans in different growth modes was also quantified and compared. Results C. albicans wild-type reference strains and clinical isolates, but not the biofilm-defective mutants, formed a significant number of biotic biofilms on the vaginal epithelium of mice and infiltrated the epithelium. Biofilm formation and epithelial invasion induced local inflammatory responses and histopathological changes in the vaginal epithelium including neutrophil infiltration and subcorneal microabscesses. Biofilm growth on the vaginal epithelium also led to high resistance to antifungal treatments and promoted the formation of antifungal-tolerant persister cells. Conclusion This study comprehensively assessed biofilm-related microbial strategies that C. albicans uses in vaginal candidiasis and provided experimental evidence to support the important role of biofilm formation in the histopathogenesis of vaginal candidiasis and the recalcitrance of the infection to antifungal treatment.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Sisi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiying Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Laien Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenle Dong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huale Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Boyun Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhuang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Margaret Deighton
- School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Yue Qu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University-Monash BDI Alliance in Clinical and Experimental Biomedicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Wu X, Zhang S, Xu X, Shen L, Xu B, Qu W, Zhuang W, Locock K, Deighton M, Qu Y. RAFT-Derived Polymethacrylates as a Superior Treatment for Recurrent Vulvovaginal Candidiasis by Targeting Biotic Biofilms and Persister Cells. Front Microbiol 2019; 10:2592. [PMID: 31787962 PMCID: PMC6853869 DOI: 10.3389/fmicb.2019.02592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a common infection in need of more effective treatment. Formation of epithelium-associated Candida biofilms and the presence of persister cells are among the major contributing factors to the recurrence of this condition. We have previously developed RAFT-derived polymethacrylates that are effective in killing C. albicans biofilms in vitro. This study aimed to examine the clinical potential of polymethacrylates as antifungals for treatment of recurrent VVC (RVVC). Methods A mouse model of VVC was used to establish vaginal epithelium-associated biofilms, using C. albicans isolates from VVC/RVVC patients. A comparison was made of the efficacies of polymethacrylates and conventional antifungals, clotrimazole and nystatin, in killing Candida in epithelium-associated biofilms in vivo. Ex vivo biofilms were used for Candida population profiling and to quantify persister cells in vaginal epithelia. The potency of polymethacrylates and conventional antifungals against persister cells, either as sole agents or in combination, was assessed. Results Polymethacrylates showed negligible local toxicity, resistance to vaginal acidity, and outstanding in vivo activity against vaginal epithelium-associated C. albicans biofilms. In vivo tests polymethacrylates outperformed the conventional antifungals, nystatin and clotrimazole at concentrations 50 times below the over-the-counter concentrations. Using polymethacrylates was associated with fewer persister cells, and better eradication of persister cells pre-selected by conventional antifungals. Conclusion This study systematically assessed the clinical potential of RAFT-derived polymethacrylates as an effective treatment for VVC/RVVC in a mouse model. Polymethacrylates effectively killed vaginal epithelium-related C. albicans in vivo by specially targeting biotic biofilms and persister cells. Treatment presented negligible local toxicity.
Collapse
Affiliation(s)
- Xueqing Wu
- The Division of Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Sisi Zhang
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Laien Shen
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Boyun Xu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Wenzhen Qu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhuang
- The Division of Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Katherine Locock
- CSIRO Manufacturing Flagship, Clayton, VIC, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Deighton
- School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Yue Qu
- Neonatal Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Makanjuola O, Bongomin F, Fayemiwo SA. An Update on the Roles of Non- albicans Candida Species in Vulvovaginitis. J Fungi (Basel) 2018; 4:E121. [PMID: 30384449 PMCID: PMC6309050 DOI: 10.3390/jof4040121] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023] Open
Abstract
Candida species are one of the commonest causes of vaginitis in healthy women of reproductive age. Vulvovaginal candidiasis (VVC) is characterized by vulvovaginal itching, redness and discharge. Candida albicans, which is a common genito-urinary tract commensal, has been the prominent species and remains the most common fungal agent isolated from clinical samples of patients diagnosed with VVC. In recent times, however, there has been a notable shift in the etiology of candidiasis with non-albicans Candida (NAC) species gaining prominence. The NAC species now account for approximately 10% to as high as 45% of VVC cases in some studies. This is associated with treatment challenges and a slightly different clinical picture. NAC species vaginitis is milder in presentation, often occur in patients with underlying chronic medical conditions and symptoms tend to be more recurrent or chronic compared with C. albicans vaginitis. C. glabrata is the most common cause of NAC-VVC. C. tropicalis, C. krusei, C. parapsilosis, and C. guilliermondii are the other commonly implicated species. Treatment failure is common in NAC-VVC, since some of these species are intrinsically resistant or show low susceptibilities to commonly used antifungal agents. This article reviews the etiology, pathogenesis, clinical features, diagnosis, and management of NAC vulvovaginitis.
Collapse
Affiliation(s)
- Olufunmilola Makanjuola
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan 200284, Nigeria.
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Gulu University, Gulu P.O. Box 166, Uganda.
| | - Samuel A Fayemiwo
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan 200284, Nigeria.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
11
|
Han Y, Jiang HH, Zhang YJ, Hao XJ, Sun YZ, Qi RQ, Chen HD, Gao XH. Cell wall mannoprotein of Candida albicans induces cell cycle alternation and inhibits apoptosis of HaCaT cells via NF-κB signal pathway. Microb Pathog 2017; 111:440-445. [PMID: 28923602 DOI: 10.1016/j.micpath.2017.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 01/20/2023]
Abstract
Candida albicans (C. albicans) is a commensal organism in human and a well-known dimorphic opportunistic pathogenic fungus. Though plenty of researches on the pathogenesis of C. albicans have been performed, the mechanism is not fully understood. The cell wall components of C. albicans have been documented to play important roles in its pathogenic processes. To further study the infectious mechanism of C. albicans, we investigated the potential functional role of its cell wall mannoprotein in cell cycle and apoptosis of HaCaT cells. We found that mannoprotein could promote the transition of cell cycle from G1/G0 to S phase, in which Cyclin D1, CDK4 and p-Rb, the major regulators of the cell cycle progression, showed significant upregulation, and CDKN1A (cyclin dependent kinase inhibitor 1A (p21)) showed significant downregulation. Mannoprotein also could inhibit apoptosis of HaCaT cells, which was well associated with increased expression of BCL2 (Bcl-2). Moreover, mannoprotein could increase the phosphorylation levels of RELA (p65) and NFKBIA (IκBα), as the key factors of NF-κB signal pathway in HaCaT cells, suggesting the activation of NF-κB signal pathway. Additionally, a NF-κB specific inhibitor, PDTC, could rescue the effect of mannoprotein on cell cycle and apoptosis of HaCaT cells, which suggested that mannoprotein could activate NF-κB signal pathway to mediate cell cycle alternation and inhibit apoptosis.
Collapse
Affiliation(s)
- Yang Han
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Hang-Hang Jiang
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Yu-Jing Zhang
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xing-Jia Hao
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Yu-Zhe Sun
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Rui-Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xing-Hua Gao
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| |
Collapse
|