1
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
2
|
Usuda D, Higashikawa T, Hotchi Y, Usami K, Shimozawa S, Tokunaga S, Osugi I, Katou R, Ito S, Yoshizawa T, Asako S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Oba J, Nomura T, Sugita M. Exophiala dermatitidis. World J Clin Cases 2021; 9:7963-7972. [PMID: 34621853 PMCID: PMC8462220 DOI: 10.12998/wjcc.v9.i27.7963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Exophiala is a genus comprising several species of opportunistic black yeasts, which belongs to Ascomycotina. It is a rare cause of fungal infections. However, infections are often chronic and recalcitrant, and while the number of cases is steadily increasing in both immunocompromised and immunocompetent people, detailed knowledge remains scarce regarding infection mechanisms, virulence factors, specific predisposing factors, risk factors, and host response. The most common manifestations of Exophiala infection are skin infections, and the most frequent type of deep infection is pulmonary infection due to inhalation. The invasive disease ranges from cutaneous or subcutaneous infection to systemic dissemination to internal organs. The final identification of the causative organism should be achieved through a combination of several methods, including the newly introduced diagnostic analysis, matrix-assisted laser desorption/ ionization-time-of-flight mass spectrometry, together with sequencing of the ribosomal ribonucleic acid internal transcribed spacer region of the fungi, and histological and culture findings. Regarding treatment, because anti-infective agents and natural compounds exhibited poor antibiofilm activity, few treatments have ultimately been found to be effective for specific antifungal therapy, so the optimal antifungal therapy and duration of therapy for these infections remain unknown. Therefore, most forms of disease caused by Exophiala dermatitidis require aggressive combination therapies: Both surgical intervention and aggressive antifungal therapy with novel compounds and azoles are necessary for effective treatment.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Toshihiro Higashikawa
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi 935-8531, Toyama-ken, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kenki Usami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shungo Tokunaga
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Toshihiko Yoshizawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Suguru Asako
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Jiro Oba
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| |
Collapse
|
3
|
Souza ACO, Al Abdallah Q, DeJarnette K, Martin-Vicente A, Nywening AV, DeJarnette C, Sansevere EA, Ge W, Palmer GE, Fortwendel JR. Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi. Virulence 2020; 10:511-526. [PMID: 31131706 PMCID: PMC6550545 DOI: 10.1080/21505594.2019.1620063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein prenylation is a crucial post-translational modification largely mediated by two heterodimeric enzyme complexes, farnesyltransferase and geranylgeranyltransferase type-I (GGTase-I), each composed of a shared α-subunit and a unique β-subunit. GGTase-I enzymes are validated drug targets that contribute to virulence in Cryptococcus neoformans and to the yeast-to-hyphal transition in Candida albicans. Therefore, we sought to investigate the importance of the α-subunit, RamB, and the β-subunit, Cdc43, of the A. fumigatus GGTase-I complex to hyphal growth and virulence. Deletion of cdc43 resulted in impaired hyphal morphogenesis and thermo-sensitivity, which was exacerbated during growth in rich media. The Δcdc43 mutant also displayed hypersensitivity to cell wall stress agents and to cell wall synthesis inhibitors, suggesting alterations of cell wall biosynthesis or stress signaling. In support of this, analyses of cell wall content revealed decreased amounts of β-glucan in the Δcdc43 strain. Despite strong in vitro phenotypes, the Δcdc43 mutant was fully virulent in two models of murine invasive aspergillosis, similar to the control strain. We further found that a strain expressing the α-subunit gene, ramB, from a tetracycline-inducible promoter was inviable under non-inducing in vitro growth conditions and was virtually avirulent in both mouse models. Lastly, virulence studies using C. albicans strains with tetracycline-repressible RAM2 or CDC43 expression revealed reduced pathogenicity associated with downregulation of either gene in a murine model of disseminated infection. Together, these findings indicate a differential requirement for protein geranylgeranylation for fungal virulence, and further inform the selection of specific prenyltransferases as promising antifungal drug targets for each pathogen.
Collapse
Affiliation(s)
- Ana Camila Oliveira Souza
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Qusai Al Abdallah
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Kaci DeJarnette
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Adela Martin-Vicente
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ashley V Nywening
- b Department of Molecular Immunology and Biochemistry , College of Graduate Health Sciences, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Christian DeJarnette
- b Department of Molecular Immunology and Biochemistry , College of Graduate Health Sciences, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Emily A Sansevere
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Wenbo Ge
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Glen E Palmer
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Jarrod R Fortwendel
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|