1
|
Neoh CF, Jeong W, Kong DCM, Beardsley J, Kwok PCL, Slavin MA, Chen SCA. New and emerging roles for inhalational and direct antifungal drug delivery approaches for treatment of invasive fungal infections. Expert Rev Anti Infect Ther 2024:1-14. [PMID: 39317940 DOI: 10.1080/14787210.2024.2409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The rising prevalence of difficult-to-treat, deep-seated invasive fungal diseases (IFD) has led to high mortality. Currently available antifungal treatments, administered predominantly orally or intravenously, may not sufficiently penetrate certain body sites, and/or are associated with systemic toxicity. Little is known about how to position alternative administration approaches such as inhalational and direct drug delivery routes. AREAS COVERED This review provides an updated overview of unconventional drug delivery strategies for managing IFD, focusing on inhalational (to target the lungs) and direct delivery methods to the central nervous system, bone/joint, and eyes. Novel compounds (e.g. opelconazole) and existing antifungals with innovative drug delivery systems currently undergoing clinical trials and/or used off-label in the clinical setting are discussed. EXPERT OPINION For both inhalational agents and direct delivery approaches, there are similar challenges that include the absence of: approved formulations for specific administration routes, delivery vehicles that are simple and safe to use whilst maintaining potency and efficiency of delivery, animal models suitable for investigating pharmacokinetic/pharmacodynamic profiles of inhaled antifungals, and consensus on the composite endpoints and intervals for of follow-up in clinical trials. To meet these challenges, cooperation of all stakeholders in drug development and regulation is required.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Wirawan Jeong
- Pharmacy Department, The Royal Women's Hospital, Melbourne, Australia
| | - David C M Kong
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Justin Beardsley
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
2
|
Smith HL, Bensman TJ, Mishra S, Li X, Dixon CA, Sheikh J, McMaster OG, Joshi A, Rubin DB, Goodwin A, Miller TJ, Danielsen ZY, Syed I, Shukla SJ, Iarikov D, Kim PW, Farley JJ. Regulatory Considerations in the Approval of Rezafungin (Rezzayo) for the Treatment of Candidemia and Invasive Candidiasis in Adults. J Infect Dis 2024; 230:505-513. [PMID: 38502709 DOI: 10.1093/infdis/jiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
On 22 March 2023, the FDA approved rezafungin (Rezzayo) for the treatment of candidemia and invasive candidiasis in adults with limited or no alternative treatment options. Rezafungin is an echinocandin that supports weekly dosing, enabling outpatient parenteral treatment that potentially avoids the need for a central venous catheter. Approval of rezafungin was based on a single adequate and well-controlled phase 3 study designed with a day 30 all-cause mortality primary end point and 20% noninferiority margin, which demonstrated that rezafungin is noninferior to the comparator echinocandin. Nonclinical studies of rezafungin in nonhuman primates identified a neurotoxicity safety signal; however, rezafungin's safety profile in the completed clinical studies was similar to other Food and Drug Administration-approved echinocandins. Here we describe the rationale for this approval and important considerations during the review process for a flexible development program intended to expedite the availability of antimicrobial therapies to treat serious infections in patients with limited treatment options. Clinical Trials Registration . NCT02734862 and NCT03667690.
Collapse
Affiliation(s)
- Heidi L Smith
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shrimant Mishra
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xianbin Li
- Division of Biometrics IV, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Cheryl A Dixon
- Division of Biometrics IV, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jalal Sheikh
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Owen G McMaster
- Division of Pharmacology/Toxicology for Infectious Diseases, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Abhay Joshi
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daniel B Rubin
- Division of Biometrics IV, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Avery Goodwin
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Terry J Miller
- Division of Pharmacology/Toxicology for Infectious Diseases, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhixia Y Danielsen
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Irum Syed
- DRT Strategies, Inc, Arlington, Virginia, USA
| | - Sunita J Shukla
- Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dmitri Iarikov
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Peter W Kim
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John J Farley
- Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Gomez-Lopez A, Sanchez Galiano S, Ortega Madueño S, Carballo Gonzalez C. Observed isavuconazole exposure: 5-year experience of azole TDM from a Spanish reference laboratory. Med Mycol 2023; 61:myad086. [PMID: 37580172 DOI: 10.1093/mmy/myad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023] Open
Abstract
We aimed to assess patient exposure to isavuconazole (ISZ) from samples received in our laboratory for therapeutic antifungal monitoring. We used liquid chromatography coupled with ultraviolet (UV) absorbance detection adapted from a multiplex-validated method with photodiode array (PDA) detection to monitor the analytes. The latter device allows the characterization of the azoles UV spectra. The method was validated according to international guidelines for efficient ISZ monitoring. The assay exhibited linearity between 0.25 and 16 mg/l for ISZ. Accuracy and intra- and inter-day precision were within acceptable ranges, and the method was successfully applied to quantify azoles and major metabolites from clinical samples collected from treated patients. We focus on ISZ blood concentrations and compared them to those of voriconazole, posaconazole, and itraconazole for a period of 5 years (2017-2021). Median ISZ concentration was 2.92 mg/l (interquartile range 1.82-5.33 mg/l) with 89% of measurements classified as adequate exposure (> 1 mg/l). Additionally, 71% of samples reach concentration values > 2 mg/l. Different ISZ exposure between adults to children were found. In conclusion, ISZ achieves excellent blood concentrations compared to other azole drugs, they are almost identical to those previously described, they exceed the MICs of most fungi for which its use was recommended and they differ depending on the patient's age. The method we describe for antifungal monitoring is simple, robust, and efficient. It simultaneously analyzes azoles and metabolites, and can be used for tailored interventions, achieve exposures associated with therapeutic success, decrease treatment-related toxicity, and help prevent resistance emergence due to continuous azole sub-optimal concentrations.
Collapse
Affiliation(s)
- Alicia Gomez-Lopez
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo Km 2 Madrid, Spain
| | - Susana Sanchez Galiano
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| | - Sheila Ortega Madueño
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| | - Cristina Carballo Gonzalez
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| |
Collapse
|
4
|
Peláez-García de la Rasilla T, Mato-López Á, Pablos-Puertas CE, González-Huerta AJ, Gómez-López A, Mellado E, Amich J. Potential Implication of Azole Persistence in the Treatment Failure of Two Haematological Patients Infected with Aspergillus fumigatus. J Fungi (Basel) 2023; 9:805. [PMID: 37623576 PMCID: PMC10455522 DOI: 10.3390/jof9080805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Invasive aspergillosis (IA) is a major cause of morbidity and mortality in patients receiving allogeneic haematopoieticcell transplantation. The deep immunosuppression and a variety of potential additional complications developed in these patients result in IA reaching mortality rates of around 50-60%. This mortality is even higher when the patients are infected with azole-resistant isolates, demonstrating that, despite the complexity of management, adequate azole treatment can have a beneficial effect. It is therefore paramount to understand the reasons why antifungal treatment of IA infections caused by azole-susceptible isolates is often unsuccessful. In this respect, there are already various factors known to be important for treatment efficacy, for instance the drug concentrations achieved in the blood, which are thus often monitored. We hypothesize that antifungal persistence may be another important factor to consider. In this study we present two case reports of haematological patients who developed proven IA and suffered treatment failure, despite having been infected with susceptible isolates, receiving correct antifungal treatment and reaching therapeutic levels of the azole. Microbiological analysis of the recovered infective isolates showed that the patients were infected with multiple strains, several of which were persisters to voriconazole and/or isavuconazole. Therefore, we propose that azole persistence may have contributed to therapeutic failure in these patients and that this phenomenon should be considered in future studies.
Collapse
Affiliation(s)
- Teresa Peláez-García de la Rasilla
- Microbiology Department, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain
- Institute for Health Research in the Principality of Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Clara E. Pablos-Puertas
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Ana Julia González-Huerta
- Hematology-Stem Cell Transplantation Unit, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Alicia Gómez-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139NT, UK
| |
Collapse
|
5
|
Otto WR, Arendrup MC, Fisher BT. A Practical Guide to Antifungal Susceptibility Testing. J Pediatric Infect Dis Soc 2023; 12:214-221. [PMID: 36882026 PMCID: PMC10305799 DOI: 10.1093/jpids/piad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
We review antifungal susceptibility testing and the development of clinical breakpoints, and detail an approach to using antifungal susceptibility results when breakpoints have not been defined. This information may prove helpful when selecting therapy for invasive fungal infections in children.
Collapse
Affiliation(s)
- William R Otto
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Brian T Fisher
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Liu H, Qiao Z, Jang YO, Kim MG, Zou Q, Lee HJ, Koo B, Kim SH, Yun K, Kim HS, Shin Y. Diatomaceous earth/zinc oxide micro-composite assisted antibiotics in fungal therapy. NANO CONVERGENCE 2021; 8:32. [PMID: 34694514 PMCID: PMC8542915 DOI: 10.1186/s40580-021-00283-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
As the second wave of COVID-19 hits South Asia, an increasing deadly complication 'fungal infections (such as Mycosis, Candida and Aspergillus) outbreak' has been raised concern about the insufficient technologies and medicals for its diagnosis and therapy. Biosilica based nano-therapy can be used for therapeutic efficacy, yet their direct role as antibiotic agent with biocompatibility and stability remains unclear. Here, we report that a diatomaceous earth (DE) framework semiconductor composite conjugated DE and in-house synthesized zinc oxide (DE-ZnO), as an antibiotic agent for the enhancement of antibiotic efficacy and persistence. We found that the DE-ZnO composite had enhanced antibiotic activity against fungi (A. fumigatus) and Gram-negative bacteria (E. coli, S. enterica). The DE-ZnO composite provides enhancing large surface areas for enhancement of target pathogen binding affinity, as well as produces active ions including reactive oxygen species and metal ion for breaking the cellular network of fungi and Gram-negative bacteria. Additionally, the toxicity of DE-ZnO with 3 time less amount of dosage is 6 times lower than the commercial SiO2-ZnO. Finally, a synergistic effect of DE-ZnO and existing antifungal agents (Itraconazole and Amphotericin B) showed a better antifungal activity, which could be reduced the side effects due to the antifungal agents overdose, than a single antibiotic agent use. We envision that this DE-ZnO composite can be used to enhance antibiotic activity and its persistence, with less-toxicity, biocompatibility and high stability against fungi and Gram-negative bacteria which could be a valuable candidate in medical science and industrial engineering.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Qingshuang Zou
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, Seongnam, 13120, Republic of Korea
| | - Hyun-Soo Kim
- INFUSIONTECH, Gyeonggi-do, 427 beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Echeverria-Esnal D, Martín-Ontiyuelo C, Navarrete-Rouco ME, Barcelo-Vidal J, Conde-Estévez D, Carballo N, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Pharmacological management of antifungal agents in pulmonary aspergillosis: an updated review. Expert Rev Anti Infect Ther 2021; 20:179-197. [PMID: 34328373 DOI: 10.1080/14787210.2021.1962292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Aspergillus may cause different types of lung infections: invasive, chronic pulmonary or allergic bronchopulmonary aspergillosis. Pharmacological management with antifungals poses as a challenge. Patients diagnosed with pulmonary aspergillosis are complex, as well as the problems associated with antifungal agents. AREAS COVERED This article reviews the pharmacology of antifungal agents in development and currently used to treat pulmonary aspergillosis, including the mechanisms of action, pharmacokinetics, pharmacodynamics, dosing, therapeutic drug monitoring and safety. Recommendations to manage situations that arise in daily clinical practice are provided. A literature search of PubMed was conducted on November 15th, 2020 and updated on March 30th, 2021. EXPERT OPINION Recent and relevant developments in the treatment of pulmonary aspergillosis have taken place. Novel antifungals with new mechanisms of action that extend antifungal spectrum and improve pharmacokinetic-related aspects, drug-drug interactions and safety are under current study. For those antifungals already marketed, new data related to pharmacokinetics, pharmacodynamics, dose adjustments in special situations, therapeutic drug monitoring and safety are available. To maximize efficacy and reduce the risk of associated toxicities, it is essential to choose the most appropriate antifungal; optimize its dose, interval, route of administration and length of treatment; and prevent side effects.
Collapse
Affiliation(s)
- Daniel Echeverria-Esnal
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | | | | | - David Conde-Estévez
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nuria Carballo
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | | | - Olivia Ferrández
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain.,Infectious Diseases Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Basu SS, Agar NYR. Bringing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging to the Clinics. Clin Lab Med 2021; 41:309-324. [PMID: 34020766 DOI: 10.1016/j.cll.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging analytical technique that promises to change tissue-based diagnostics. This article provides a brief introduction to MALDI MSI as well as clinical diagnostic workflows and opportunities to apply this powerful approach. It describes various MALDI MSI applications, from more clinically mature applications such as cancer to emerging applications such as infectious diseases and drug distribution. In addition, it discusses the analytical considerations that need to be considered when bringing these approaches to different diagnostic problems and settings.
Collapse
Affiliation(s)
- Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Fernández-Cruz A, Lewis RE, Kontoyiannis DP. How Long Do We Need to Treat an Invasive Mold Disease in Hematology Patients? Factors Influencing Duration of Therapy and Future Questions. Clin Infect Dis 2021; 71:685-692. [PMID: 32170948 DOI: 10.1093/cid/ciz1195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Treatment duration for invasive mold disease (IMD) in patients with hematological malignancy is not standardized and is a challenging subject in antifungal stewardship. Concerns for IMD relapse during subsequent reinduction or consolidation chemotherapy or graft versus host disease treatment in hematopoietic stem cell transplant recipients often results in prolonged or indefinite antifungal treatment. There are no validated criteria that predict when it is safe to stop antifungals. Decisions are individualized and depend on the offending fungus, site and extent of IMD, comorbidities, hematologic disease prognosis, and future plans for chemotherapy or transplantation. Recent studies suggest that FDG-PET/CT could help discriminate between active and residual fungal lesions to support decisions for safely stopping antifungals. Validation of noninvasive biomarkers for monitoring treatment response, tests for quantifying the "net state of immunosuppression," and genetic polymorphisms associated with poor fungal immunity could lead to a personalized assessment for the continued need for antifungal therapy.
Collapse
Affiliation(s)
- Ana Fernández-Cruz
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Russell E Lewis
- Clinic of Infectious Diseases, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
|
11
|
Therapeutic Challenges of Non- Aspergillus Invasive Mold Infections in Immunosuppressed Patients. Antimicrob Agents Chemother 2019; 63:AAC.01244-19. [PMID: 31481441 DOI: 10.1128/aac.01244-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While Aspergillus spp. remain the major cause of invasive mold infections in hematologic cancer patients and transplant recipients, other opportunistic molds, such as Mucorales, Fusarium, and Scedosporium spp. are increasingly encountered in an expanding population of patients with severe and prolonged immunosuppression. High potential for tissue invasion and dissemination, resistance to multiple antifungals and high mortality rates are hallmarks of these non-Aspergillus invasive mold infections (NAIMIs). Assessment of drug efficacy is particularly difficult in the complex treatment scenarios of NAIMIs. Specifically, correlation between in vitro susceptibility and in vivo responses to antifungals is hard to assess, in view of the multiple, frequently interrelated factors influencing outcomes, such as pharmacokinetic/pharmacodynamic parameters determining drug availability at the site of infection, the net state of immune suppression, delay in diagnosis, or surgical debulking of infectious foci. Our current therapeutic approach of NAIMIs should evolve toward a better integration of the dynamic interactions between the pathogen, the drug and the host. Innovative concepts of experimental research may consist in manipulating the host immune system to induce a specific antifungal response or targeted drug delivery. In this review, we discuss the challenges in the management of NAIMIs and provide an update about the latest advances in diagnostic and therapeutic approaches.
Collapse
|